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Preface

The discovery of Giant Magnetoresistance (GMR) in 1988 laid the foundation to a whole new
and very active research field — Spinelectronics or Spintronics — which strives to exploit the
electron spin and electron spin currents as the basic carriers for the device functionality and
information transfer in electronic devices. The pioneering work of Peter Griinberg (IFF) and
Albert Fert (Université Paris-Sud), changed our view of the role of the electron spin in electrical
transport and has been honored by the 2007 Nobel Prize in Physics, partly also because of its
enormous technological and economical impact. Only 10 years after the discovery of the effect
in the laboratory, GMR-based hard disk read heads hit the market as first generation spintronic
devices and revolutionized the magnetic mass storage industry. Since its advent 20 years ago,
Spintronics continues to provide us with a wide variety of spin-dependent transport and transfer
processes, novel materials, phenomena and concepts, and many open questions and challenges.
The emphasis in current spintronics research is threefold:

e First, it aims to achieve a control of and the ability to manipulate spin transport on very
small length scales down to the level of single spins, which will open a pathway to quan-
tum information applications. This control also includes the active switching of the mag-
netization by means of spin-polarized currents.

e Second, in order to obtain the best of both worlds spinelectronics may be combined with
advanced semiconductor nanoelectronics. A crucial step in this direction is the realization
of an efficient electrical spin-injection into semiconductors.

e Third, the next generation of spintronic devices should combine passive and active func-
tionalities, thereby enabling magnetologic circuits and even magnetoprocessors.

On the way to meet these challenges many fundamental questions have to be solved and many
new materals and materials combinations will be developed and explored. Among others this
concerns the microscopic interactions and mechanisms leading to spin dephasing, the manipu-
lation of spins by spin-orbit interactions, the understanding of spin transfer torque mechanisms,
and the utilization of the spin Hall effect. On the material side, dilute magnetic semiconductors,
highly spin-polarized oxides and half-metals, but also graphene and multiferroics are currently
in the focus of interest.

The present course continues a series of Spring Schools in thin film magnetism and nano-
magnetism taking place in the years 1993, 1999, and 2005, and particularly addresses the new
developments in the field of spintronics. The lectures will first build a basis for the under-
standing of the major fundamental phenomena and aspects in magnetism and spin-dependent
transport. This includes new theoretical concepts as well as the theoretical framework for a
quantitative description. The School will then advance to contemporary aspects of the anoma-
lous, spin and quantum spin Hall effect, and of spin transfer processes at interfaces and in
nanostructures down to the quantum level. Exchange interactions and spin effects in highly
correlated materials are another important topic covered by the lectures. Finally, we will also
discuss current and future technological applications of spintronics concepts.



The topics of the lectures cover:

e Fundamentals of Magnetism

e Spin-dependent Interactions

e Quantum Transport

e Spin Transport Phenomena

e Spin Injection and Coherence

e Spin Transfer Torque

e Electronic Correlations

e Magnetization and Spin Dynamics
e Multiferroics

e Spin Hall Effect

e Magnetic Storage, Memory and Logics
e Quantum Information Processing

For the first time, this year the IFF Spring School takes place under the umbrella of the Jiilich-
Aachen Research Alliance (JARA). JARA combines complementing expertise at the RWTH
Aachen University and the Forschungszentrum Jiilich to address research fields identified at
an international level in a targeted manner. The research and education activities in the area
of “Fundamentals of Future Information Technology” are bundled in the section JARA-FIT.
Furthermore, the school has been organized in collaboration with the Universities of Cologne
and Duisburg-Essen and is integrated in the curricula of these universities.

We are grateful to all contributors from the Institut fiir Festkorperforschung (IFF), the In-
stitut fiir Bio- und Nanosysteme (IBN), and the Institute for Advanced Simulation (IAS) in the
Forschungszentrum Jiilich, as well as the Institut fiir Experimentalphysik of the RWTH Aachen
University for the time and effort they spent to prepare the manuscripts and the lectures, and for
their spontaneous help and support of this spring school:

Dr. B. Beschoten (RWTH) Prof. P. Bechthold (IFF-9)

Dr. G. Bihlmayer (IFF-1 & IAS) Dr. A. Bringer (IFF-1)

Prof. P. A. Griinberg (IFF-9) PD Dr. R. Hertel (IFF-9)

Dr. M. Lezai¢ (IFF-1 & IAS) Dr. A. Liebsch (IFF-1)

Dr. Ph. Mavropoulos (IFF-1& IAS) Dr. C. Meyer (IFF-9)

Dr. Y. Mokrousov (IFF-1 & IAS) Dr. M. Miiller (IFF-9)

Dr. M. Richter (IAS-JSC) Dr. Th. Schépers (IBN-1)
JunProf. M. Wegewijs (IFF-3) Dr. D. Wortmann (IFF-1 & TAS)

Dr. R. Zeller (IFF-3)

A large number of courses is offered during the school. We are grateful to our colleagues from
the Research Centre Jiilich and the RWTH Aachen University for their willingness to conduct
these courses. The Jiilich and Aachen divisions involved in the lectures are: IFF-1: Quantum
Theory of Materials, IFF-3: Theory of Structure Formation, IFF-6: Electronic Materials, IFF-9:
Electronic Properties, IBN-1: Semiconductor Nanoelectronics, IAS-JSC: Jiilich Supercomput-
ing Centre, and RWTH: II. Institute of Physics A & B.



We are very glad that several colleagues from external universities and (industry) research lab-
oratories have agreed to contribute to the program of the school:

Dr. A. Berger
Prof. M. Brandt
Prof. H. Buhmann
Prof. M.-C. Chang

Prof. S. Demokritov
Prof. J. Fabian

Prof. A. Fert

Prof. F. Ishii

Dr. S. S. P. Parkin
Prof. T. Rasing

Prof. G. Reiss

CIC Nanogune, Donostia, Spain

Walter-Schottky-Institut, Technische Universitit Miinchen
Physikalisches Institut EP-3, Universitit Wiirzburg
Department of Physics, National Taiwan Normal University,
Taiwan

Institut fiir Angewandte Physik, Universitidt Miinster

Institut fiir Theoretische Physik, Universitit Regensburg
Unité Mixte de Physique CNRS/THALES, Orsay, France
Department of Computational Science, Kanazawa University,
Japan

IBM Research Laboratories, Almaden, USA

Inst. f. Molecules and Materials, Radboud University Nijmegen,
The Netherlands

Physik Department, Universitit Bielefeld

Without the participation of all these colleagues, the program would not be as interesting, versa-
tile, and attractive. We would like to express our thanks to all of them for the effort and enthusi-
asm which they have put into the preparation and presentation of their lectures and manuscripts.
We are very grateful to the board of directors of the Forschungszentrum Jiilich for the continu-
ous organizational and financial support, which we have received for the realization of the IFF
Spring School and the production of this book of lecture notes. Finally, our special thanks go
to Dipl.-Ing. R. Holzle for the general management, to Mrs. A. Wenzik for taking care of the
public relation issues, and to Mrs. L. Snyders for her help in compiling the Lecture Notes.

C. M. Schneider, D. E. Biirgler, S. Bliigel, R. Waser, M. Morgenstern

February 2009
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1.2 Claus M. Schneider

Having its roots in magnetism — or more specifically — thin film magnetism, over the last two
decades spinelectronics has matured into a research field in its own right. Nowadays it includes
aspects not only from basically all areas of condensed matter physics, but also from electrical
engineering, chemistry, and even biology. Spintronics features a wealth of spin-based effects
and involves an extremely broad material basis. In this situation the Spring School has to limit
itself to a selection of topics only. The purpose of this introduction is therefore to give some
historical background and provide an overview of the main phenomena and material classes.

1 The Phenomenon Magnetism

Magnetism poses an intriguing phenomenon which is known to mankind already for a long
time. It was noted more than 2000 years ago that iron is attracted to pieces of a certain mineral
— the loadstone or lodestone. The loadstone contains a mixture of different iron oxides, one
of them being the ferrimagnet Magnetite, FesO, (Fig. 1). The name goes back to the Greek
region Magnisia, where this mineral was found. The large remanent magnetization of natu-
rally occuring loadstone is attributed to the strong magnetic fields, which surround lightning
bolts striking the ground. These fields align the magnetic moments in the material causing a
permanent magnetic behavior.

Fig. 1: Lumps of Magnetite rocks attracting Iron filings and paper clips (a) and natural Mag-
netite (Fe30y) single crystals (b).

The first rudimentary application of magnetism dates back already to the 12" century when
a compass device was reported to be used by Chinese military (Fig. 2). It took up to the 15
century for the first truly scientific study of magnetism to be conducted, described by W. Gilbert
in his book “De Magnete” [1]. With this growing knowledge of quantitative interrelations in
physics and the development of accompanying mathematical tools, the interpretation of mag-
netic phenomena shifted slowly from metaphysical to a more analytical reasoning.

Maxwell’s equations represent an important milestone in this course and opened the pathway
to treat magnetic phenomena in the framework of classical electrodynamics [2]. The concept
of magnetic fields interacting with matter, thereby producing mechanical forces and electrical
fields, forms the basis of our modern technology and laid the foundation for a phenomenologi-
cal description of the various types of magnetic order. The microscopic mechanisms leading to
magnetism as a solid state property, however, became only accessible after the advent of quan-
tum mechanics, which introduced a very important property of the electron — the spin. Mag-
netism is a many-electron phenomenon involving interactions on very different length scales
between spins, spins and lattice, or spins and external magnetic fields. Therefore, magnetic
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Fig. 2: Replica of a chinese compass. The
handle of the spoon always facing to the
south, this device was called “zhi-nan-
zhen”, which means “south pointer”.
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systems develop a wealth of magnetization and spin structures covering length scales of more
than eight orders of magnitude down to atomic dimensions.

Particularly in the last century, magnetism and magnetic materials have exerted an enormous
impact on the technological development in very different areas. Electrical motors and gen-
erators form the fundament of our electrical power engineering and many other areas, such as
automation, automotion, etc. Magnetic resonance imaging (MRI) has become an indispensible
tool in medical diagnostics, and bioassays with magnetic labeling schemes are currently being
developed for lab-on-chip analytics in chemistry, biology, and biochemistry.

Above all, the entire field of information technology would be unthinkable without mass data
storage devices, which exploit various facets of magnetism. In fact, the first magnetic recording
device dates back to 1898, when V. Poulsen developed the “telegraphone” [3] (Fig. 3). The
telegraphone recorded analogue data (sound) onto a magnetic wire, which was moved in front
of aread/write head. Due to the unreliability of the wire spools, however, the telegraphone found
only limited use. At the beginning of the 1930’s recording on magnetic tape was introduced.
This principle was in widespread use for audio recordings for more than 70 years. In the 1950’s
magnetic tapes were first used by IBM to store digital data in order to replace punch cards.
In 1956 IBM introduced the first random access system (RAMAC) in an effort to improve the
data access time. This hard disk principle features a rotating disk coated with a magnetic film
into which data are stored as small magnetic domains (“bits”). It is still successfully employed
today, but features a more than eight orders of magnitude higher recording density than in 1950,
presently approaching 1 Tbit/in?. This breathtaking evolution has been and still is made possible
by the fundamental research in nanomagnetism and spintronics.

2 Currents: Electrons and Spins

The applications discussed above are making extensive use of the static and dynamic magnetic
properties, such as spontaneous magnetization, anisotropy, magnetic order, exchange coupling,
etc., occurring in specific materials. The microscopic origin of these properties in a solid rests
on quantum mechanical principles and is nowadays understood as a particular consequence
of spin-dependent interactions between Fermions in a many-electron system. These interac-
tions are provided by the exchange and spin-orbit coupling. In a closer view, we find that the
most important contribution to the magnetism comes from the electrons in the vicinity of the
Fermi level, i.e. the same electrons which are also responsible for the fundamental electrical
and optical properties of matter. This immediately leads to the interesting question: Is there
an “interference” between the magnetically ordered state of matter and its electrical or optical
behavior?
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Read/Write
Head

Storage Medium

Fig. 3: More than 100 years of magnetic recording. Left: Magnetic wire recorder developed by
V. Poulsen in 1898. The wire is wound on the drum, with the read/write head being guided by
the thread rod. Right: High-capacity hard disk drive from 2008. Vital components, such as the
read/write head and the storage medium are based on nanomagnetism and spintronics.

The question was answered — at least in a phenomenological manner — already more than 150
years ago. An interaction between light and magnetically ordered systems was first noted by
Michael Faraday in 1846 [4]. The Faraday effect describes the rotation of the polarization plane
of linearly polarized light, which passes through a magnetized crystal. Most importantly, the
rotation depends on the remanent state of the crystal and occurs also in the absence of any ex-
ternal magnetic fields. About 10 years later (1856) William Thomson, later to become Lord
Kelvin, observed a magnetic effect on the electrical conductivity [5]. The phenomenon mag-
netoresistance caused the electrical conductivity of a ferromagnetic material to depend on the
orientation of the remanent magnetization with respect to the direction of the flowing current.
A first microscopic explanation of the ordinary magnetoresistance was given by Sir Nevill Mott
in 1936 [6]. In his two-current model he considered the electrical current to consist of two
contributions, which are scattered differently — a spin-up and a spin-down contribution. The
main scattering channel involves s — d scattering, which becomes different for spin-up and
spin-down electrons due to the exchange splitting of the d-states. In this way Mott pointed out
the importance of the quantum mechanical property spin in electrical transport effects and cre-
ated a strong connection between electrical phenomena and magnetism. This concept was later
confirmed by Fert and Campbell [7], who also pointed out the importance of spin-flip scatter-
ing processes. Of technological importance is the anisotropic magnetoresistance (AMR). The
microscopic mechanism behind the AMR is spin-orbit scattering of the spin-polarized charge
carriers, which results in an anisotropic angular dependence of the current density fwith respect
to the magnetization M [8]. The maximum AMR signal is defined as

—

AR _ R(j||M) - R(j 1 M)
R R(j L M)

)

Compared to the exchange interaction, spin-orbit coupling is relatively weak, which renders
AMR a small effect, reaching a resistance change AR/ R, of a few percent in certain Ni-based
alloys at best. With respect to technical applications the relatively small effect magnitude was
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certainly a drawback. Nevertheless, in order to maintain and push the areal density growth rate
in magnetic data storage, the inductive read heads were replaced by magnetoresistive sensors
exploiting the AMR effect at the beginning of the 1990s [9]. At that time, AMR already looked
back to more than hundred years of research. It is also important to note that this progress in
magnetic recording technology was made possible by the strong scientific interest in magnetism
in reduced dimensions leading to a new and extremely fruitful research field — thin film and
surface magnetism.

3 The Discovery of Giant Magnetoresistance (GMR)

The study of thin film magnetism went hand in hand with a breathtaking improvement of the
preparation methods. By transferring first the technique of molecular beam epitaxy from semi-
conductors to metallic systems, magnetic layers and even their surfaces and interfaces could be
controlled down to an atomic level. In this way it became possible to realize artificial magnetic
systems composed of ferromagnetic films separated by ultrathin nonmagnetic layers. Also sput-
tering deposition techniques have been perfected to permit the fabrication of such nanomagnetic
systems on an industrial scale.

The confinement of the individual layer thicknesses in the nanometer regime gives rise to novel
quantum effects, affecting the magnetic properties, such as the magnetic moment or the ordering
temperature. A first breakthrough was marked by the discovery of the interlayer exchange
coupling (IEC) in 1986 [10]. This coupling mechanism forms between two ferromagnetic layers
separated by a nonferromagnetic interlayer and is mediated through spin-polarized quantum-
well states developing in the metallic interlayer. As a characteristic property, both the coupling
strength and sign vary strongly in a damped oscillatory manner with the interlayer thickness
tna- A very specific feature of this coupling is the antiparallel orientation (AP) of the layer
magnetizations forming at selected values of ty,,. These antiparallel configurations represent
magnetic ground states, which are very useful for magnetotransport experiments. In particular
material combinations, for example, Co/Ru, the interlayer coupling may be extremely strong
[11]. This property is widely employed nowadays to define a stable reference magnetization
direction via a synthetic antiferromagnet (SAF), which is a Co/Ru/Co trilayer in the first AP
coupling maximum at around ¢z, ~ 0.8 nm.

Fig. 4: Schematic picture of the spatial distribution of scattering centers (marked by stars) in
AMR (a) and GMR (b).

The statistical distribution of the scattering centers and their strong coupling to the magnetic ma-
trix in AMR materials excludes a separate optimization of the spin-polarized scattering mech-
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anisms and the magnetic properties (Fig. 4). The layered geometry in heteromagnetic thin film
stacks, however, offers a chance to modify the spin-dependent scattering effects independently
of the magnetic properties of the layer stack. This hypothesis was impressively proven by the
discovery of the giant magnetoresistance (GMR) in Fe/Cr multilayers by Albert Fert’s group
[12] and in Fe/Cr/Fe trilayers by Griinberg’s group [13]. In both cases a strong change in resis-
tivity /2 was observed when switching the magnetization of the layer stack from the antiparallel
(AP) configuration at zero magnetic field to the parallel (P) configuration in the applied satura-
tion field Hg. The magnetoresistance is then defined as

AR R(H =0)— R(Hs)
R R(Hs)

The finding of GMR initiated a broad research activity on the magnetotransport in many dif-
ferent magnetic layer systems. From these studies the Cobalt-Copper material combination
emerged as among the most interesting ones for transport applications. It combines a strong
magnetoresistive response with moderate interlayer coupling strength and favorable growth be-
havior. In multilayers a GMR ratio exceeding 60% at room temperature and 110% at cryogenic
temperatures can be achieved (Fig. 5).
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Fig. 5: Giant magnetoresistance mea-
sured in the current-in-plane geometry in
Co-Cu multilayer structures. The GMR
_ signal takes a maximum for the antiparal-
lel magnetization configuration obtained
at Cu interlayer thicknesses tc, at around
1 nm, 2 nm, and 3.5 nm.
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The reason for this strong effect in Co/Cu structures is threefold: (i) the spin-dependent scat-
tering of the charge carriers is caused by the exchange interaction, rather than the spin-orbit
coupling, (ii) the major spin-scattering contribution stems from the interfaces of the layer struc-
ture, and (iii) the Cu Fermi surface is very similar to that of the Co spin-up electrons (electronic
matching), but considerably different from the Co spin-down electrons. This unique combina-
tion of effective spin-dependent scattering and pronounced spin-dependent confinement is the
key to a high magnetoresistance ratio.

The first generation GMR-based hard disk read heads which were introduced in 1999 employed
the current-in-plane (CIP) geometry. At present they have already been replaced by sensors
based on tunneling magnetoresistance. The further increase in storage density and the transition
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to perpendicular magnetic recording may eventually lead to a revival of the GMR read head,
however, involving a current-perpendicular-to-plane (CPP) configuration.

4 Beyond GMR - the Age of Spintronics

In order to perceive the impact that the discovery of GMR had on science and technology, we
have to recall the situation in 1988: AMR was already known for more than 100 years and was
subject to intense research since the 1960’s. Despite some improvement particularly in thin
films, however, the AMR effect magnitude remained in the region of a few percent. The hard
disk industry had already decided to introduce thin film AMR read heads to meet the demands
for higher storage densities — they finally entered the market around 1990. The finding of the
giant magnetoresistance came therefore very unexpected and started a revolution in the hard
disk business. Largely based on the thin film technology originally developed for AMR read
heads, GMR read heads were developed to marketability in a period of only ten years after the
first observation of this effect.

Even more important than its economic impact were the ramifications of GMR on the research
field magnetism. GMR considerably changed our understanding of spin-dependent transport
processes — not only in magnetic systems. In this way it opened an avenue from magnetism to
microelectronics and initiated a new research area — spinelectronics or spintronics.

4.1 Spin transport effects

One of the central concepts in spintronics is the spin-scattering length )\, i.e. the distance a
spin-polarized electron can travel, before its spin direction is changed by a scattering process.
It can vary from a few nanometers in transition metals to micrometers in semiconductors. The
dimension of the functional component, i.e. the thickness of the nonmagnetic interlayer in GMR
systems, must be adapted to A, in order to observe sizable spin transport effects.

4.1.1 Tunneling Magnetoresistance

The tunneling magnetoresistance (TMR) is another important effect, which illustrates this con-
cept. TMR describes the magnetization dependence of the current through an insulating tunnel-
ing barrier and was first observed by Julliere in 1975 at low temperatures [14]. The first TMR
experiments at room temperature were successfully performed in 1995 [15, 16] and employed
Al,Og3 barriers. The thickness of the tunneling barrier is a compromise between structural per-
fection and sufficient conductivity and lies typically in the 1 —3 nm regime. The studies of TMR
effects have not only improved our understanding of the electronic properties of ferromagnets,
but also stimulated the search for new magnetic materials. The reason is the strong dependence
of the TMR signal on the spin polarization of the charge carriers, which for the simplest case is
expressed by the Julliere formula

AR  Rap—Rp 2-PDP
R Rp  1-PPD
with P, and P» denoting the spin polarization of the electrons at the Fermi level for the two mag-

netic electrodes. Implementing materials with a high spin polarization into magnetic tunneling
junctions may thus offer TMR values exceeding 100 %.

3)
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The other element that may strongly affect the TMR signal is the insulating barrier itself. This
was pointed out by theoretical treatments which predicted extremely high TMR values, if se-
lected electronic states in the barrier match one of the spin states in the electrodes [17]. This
concept was impressively confirmed by experiment for the Fe/MgO/Fe system [18, 19]. Further
development of materials and layer structures has produced TMR values exceeding 600% at
room temperature up to now [20].

4.1.2 Spin Injection

The present microelectronics technology rests on charge-based device concepts, which are re-
alized by means of semiconductors, mostly silicon. In addition, semiconductors also strongly
interact with light and thus provide optical functionalities (optoelectronics). Combining inde-
pendent spin and charge control in a single device promises a wide range of new phenomena
and applications [21]. To successfully incorporate spins into existing semiconductor technol-
ogy, however, one has to resolve several issues such as the efficient injection, transport, control
and manipulation, and detection of spin-polarized currents. Despite recent successes, the all-
electrical spin injection and detection still remains the holy grail of spin electronics [22].

gate )
source (no potential) drain
VA M
?
) ".

spinpolarized current Fig. 6: Rotation of the spin po-
electric larization in a field-effect type
field device due to the Rashba effect
gate
source (with potential) drain (taken from [23]).
M L M

Realizing new functionalities in spintronic devices requires the spin control and manipulation
of the charge carriers passing through the semiconductor. This manipulation can be achieved,
for example, by the Rashba effect [24]. This effect is due to a spin-orbit like interaction, which
is generated by an electric field in a system with broken inversion symmetry (Fig. 6). It rotates
the spin quantization axis of the charge carriers traversing the electric field. A simple device
following the field-effect transistor (FET) scheme was proposed by Datta and Das [25]. This
proposal has stimulated a broad research activity, leading to a variety of competing device
concepts, for example, based on bipolar circuit schemes [26].

4.1.3 Spin Hall Effect

In 1971 Dyakonov and Perel predicted a spin transport phenomenon in semiconductors, which
was later termed Spin Hall Effect (SHE) [27]. If we assume a slab-like geometry as sketched in
Fig. 7, the SHE generates a spin accumulation on the long sides of a current-carrying sample.
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The sign of the spin direction is opposite for the opposing boundaries. A reversal of the current
direction reverses also the spin polarization at the boundaries. This behavior bears some simi-
larity to the classical Hall effect, where an applied magnetic field exerts a Lorentz force on the
moving charge carriers and separates carriers of opposite sign to opposite sides of the slab. In
contrast to the classical Hall effect, however, a magnetic field is detrimental in the case of SHE.
The magnetic field causes the spins at the boundaries to precess, thereby destroying the spin
polarization. The microscopic origin of the SHE is the spin-orbit interaction. It couples spin
and charge currents in a peculiar manner: an electrical current induces a transverse spin current
(a flow of spins) and vice versa. The SHE has been confirmed experimentally only recently
by magnetooptical techniques [28]. The opposite effect of a spin current causing an electrical
current is also known (inverse spin Hall effect). The spin Hall effect may be seen as another
means to manipulate spins electrically.

spin current

_""—'.-.. ..

\
electron
flow

direction

Fig. 7: Principle of the spin Hall
effect: electrons with opposite
spin are separated into opposite
directions.

The Quantum Hall Effect (QHE) describes a Hall conductance quantization in a two-dimensional
electron gas (2DEG). It originates from two main ingredients, namely the Landau quantization
of the electronic levels and some disorder in the system. Of particular importance are the elec-
tronic states at the boundary of the 2DEG, the socalled edge states. These edge states provide
one-dimensional conduction paths with peculiar properties: (i) all electrons on one sample edge
move in the same direction, with electrons on the opposite sample edge moving in the oppo-
site direction, and (ii) there is no backscattering, i.e. the elastic mean free path of the electrons
approaches infinity. In particular, there is no scattering of charge carriers from one edge to the
other, which leads to the quantization of conductance levels. This picture has been extended
recently extended to spins [29], predicting a Quantum Spin Hall Effect (QSHE) to occur in cer-
tain very thin insulating layers. It involves spin-up electrons conducting along one edge of the
insulator, with spin-down electrons conducting along the other side. Despite being insulators in
the bulk, conduction is allowed at the edges because the interaction between the spin and orbital
angular momentum of the electrons reduces the energy gap between the valence and conduction
bands to zero for spin-polarized electrons. The QSHE was experimentally realized in mercury
(D) telluride (HgTe) semiconductors [30]. In a simple picture it may be considered as edge
currents of opposite spins flowing in opposite directions (Fig. 8).

4.1.4 Spin transfer effects

The effects discussed in Sects. 4.1.1 to 4.1.3 have in common that the (magnetic) state and
configuration of the sample determines the magnitude and direction of the spin current. In
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Fig. 8: The Quantum Spin Hall
Effect: In a two-dimensional in-
sulator edge currents of opposite
spin run in opposite directions.

particular, the spin transport is manipulated through the sample and the magnetization M can
be considered a stable quantity. However, in 1996 Berger and Slonczewski independently raised
the question, whether there may be a retroaction of the spin current on the magnetization [31,
32]. The microscopic mechanism for such a retroaction is basically the same spin-dependent
scattering process in the magnetic layers that leads to GMR and TMR. During the scattering
event, there is a transfer of angular momentum (spin) S to the magnetic layer, which must
be compensated by the magnetization M. Berger and Slonczewski predicted that the angular
momentum or spin transfer should lead to an excitation of the magnetization, which is then
dissipated via spin waves.

The magnitude of the spin transfer depends mainly on the current density 7 and the spin scatter-
ing asymmetry (3. Provided that the current density is sufficiently high (j = 108...10° A/cm?),
the spin transfer may be strong enough to even reverse the magnetization direction. This has
been demonstrated for the first time in Co/Cu/Co nanocontacts in 1999 [34]. Subsequent theo-
retical and experimental investigations established close links between the spin transfer process
and the magnetization dynamics described by the Landau-Lifshitz-Gilbert equation. In the mi-
crosopic picture, the electrical current through the magnetic layer system causes a continuous
spin transfer to the magnetic layer, which in turn acts like a torque onto M. This torque drives
the magnetization vector into a large-angle precessional motion, which may result into a mag-
netization reversal. Even a multi-level switching of the magnetization vector becomes possible
in this way [33].
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The spin transfer effects offer a very exciting alternative to a magnetization reversal driven
by external magnetic fields. Particularly in nanoscale magnetic elements, the current-induced
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magnetization reversal becomes much more effective than field-induced magnetization reversal.
This is a crucial issue in the realization of magnetic random access memories (MRAM). Another
manifestation of the spin transfer processes is found in the current-driven domain wall motion
[35]. This phenomenon forms the functional basis for novel magnetic logic and memory devices
[36, 37, 38].

4.2 Materials

Spin-dependent transport phenomena are often linked to specific material systems and classes.
Consequently, the wealth of spin effects which have emerged during the last twenty years has
been closely accompanied by a strong efforts in materials synthesis and an enormous broaden-
ing of the materials basis. Nowadays it covers the full range from metals to insulators, from
ferromagnets to antiferromagnets, and from thin films to molecules.

4.2.1 Halfmetallic ferromagnets

The spin polarization of the charge carriers in the vicinity of the Fermi level P(EF) is a central
quantity in spintronics, as it often decides about the efficiency of spin transport and transfer
processes and the effect magnitude, which can be obtained. This can be directly seen, for
example, in the simple Julliere model of the tunneling magnetoresistance, the quantitative form
of which is given in Eq. 3. If we increase the spin polarization of the electrode materials from,
say P, = 0.4 (a typical value for Co) to P, = 0.8, the TMR ratio will rise by almost a factor
of 10 from AR/R = 38% to AR/R = 356%. Another illustrative example is found in spin
injection from metal electrodes into semiconductors. Due to the large conductivity mismatch
at the metal-semiconductor interface, electrons injected from a metallic ferromagnet into the
semiconductor will be depolarized. In diffusive transport, the ferromagnet must provide a spin
polarization of close to 100% in order to provide a sizable spin injection effect [39] or the
resistivity mismatch must be bypassed by means of a tunneling barrier inserted at the interface
[40].

)
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55 [41]).

In order to obtain a pure spin state at the Fermi level, the electronic structure of the respec-
tive material has to have a gap around Er in either the spin-up or spin-down subbands. This
property of half-metallicity has been found by now in a number of different material classes [42]
(Fig. 10). The formation of the gap relates to specific hybridization phenomena in the electronic
structure. Well-known half-metallic ferromagnets are the half Heusler (XYZ) and full Heusler
alloys (X5YZ), the latter class providing some members with high Curie temperatures. Typical
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representatives are NiMnSb and Co,MnGe, with the gap being ascribed to Ni-Mn interactions
in the first, and to symmetry-split Co minority spin states in the second material [43]. The gap in
full-Heusler alloys is smaller than in half-Heuslers, i.e. the half-metallic state is more sensitive
to chemical disorder and the formation of surface or interface electronic states.

Several classes of oxides also are exhibiting half-metallic properties. A strongly magnetic half-
metal is CrO,, its magnetic properties resulting from a combination of ferromagnetic superex-
change and double-exchange mechanisms. The origin of the half metallicity rests in a gap in the
minority spin bands forming between the occupied oxygen 2p states and empty chromium 3d
states. The half-metallic character of CrO, depends mainly on the chromium valence and the
crystal field splitting, and is thus considered to be relatively robust. The double-exchange mech-
anisms also determine the magnetic properties in perovskites, for example, La;_,Sr,MnOj3
(LSMO). These materials have been important in the context of colossal magnetoresistance
[44]. Being an antiferromagnetic insulator for x = 1, a reduction to = 0.3 leads to a fer-
romagnetic metallic state with half-metallic character, which manganese assuming a high-spin
state. The crystal field splits the electronic levels into ¢y, and e, manifolds. The half-metallic
character is caused by an interplay of exchange- and crystal-field splitting. The majority-spin
14 state is rather localized and filled. The majority spin e, state is more spread out and partially
occupied, whereas the more localized minority spin o, states are positioned at higher energy,
thus being unoccupied.

An example for a material with a majority spin gap is provided by Magnetite (see Sect. 1).
Fe3;0, is a weakly ferromagnetic (ferrimagnetic) half metal with narrow bands and strong cor-
relation effects. The half-metallic state is attributed to a single 3d minority spin electron hopping
among the 3d majority spin cores on octahedral sites. A majority spin gap appears also in double
perovskites, with SroFeMoOg being one of the first examples investigated in spintronics con-
text. As in the perovskites, the interplay of exchange- and crystal-field splitting is responsible
for the half-metallic gap. In contrast to the perovskites, however, in the double perovskites the
majority ?o, and e, manifolds a fully occupied, while the minority ¢, states are partially filled.
As a further difference, the Curie temperature may be significantly higher than in conventional
perovskites.

4.2.2 Dilute magnetic semiconductors

A very interesting problem in spintronics is the simultaneous control of charge and spin in
the same system, i.e. the combination of semiconducting and ferromagnetic properties in the
same material. This combination provides two fascinating perspectives. First, assuming that
the ferromagnetism in the material is directly related to the density of the charge carriers
(carrier-induced ferromagnetism), the magnetic state may be easily manipulated by an elec-
tric field E acting on the charge density. Second, the semiconducting property is related to
small band gaps and provides a direct pathway to interactions with photons, which may lead
to spin-optoelectronics or optically induced magnetism. These opportunities to create multi-
functional materials drive the research on dilute magnetic semiconductors (DMS). DMS are
nonmagnetic semiconductors, which have been doped with transition metal atoms carrying a
high atomic magnetic moment, typically chromium or manganese. The probably most intensely
studied DMS and one of the very few proven examples for carrier-induced ferromagnetism is
{Ga,Mn}As [45, 46]. The drawback of this material, however, is its low Curie temperature.

The origin of ferromagnetism in magnetic semiconductors is attributed to a Zener exchange
mechanism. Mean-field theoretical treatments within the Zener picture have predicted partic-
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Fig. 11: Curie temperatures of {Ga,Mn}As (a) and {Ga,Mn}N (b) calculated within the mean-
field approximation (MFA) and by Monte-Carlo simulations (MCS). (c) Calculated spinodal
nano-decomposition in {Ga,Mn(30%)}N, leading to T = 700 K (purple dots mark Cr
atoms). Taken from [48].

ular III-V and II-VI compound semiconductors, namely GaN and ZnO to exhibit Curie tem-
peratures well above 300 K [47]. These predictions have initiated a large materials research
activity on DMS. Although a high Curie temperature has been observed for very high doping
(in the range of several percent of the magnetic element), the origin of ferromagnetism in these
systems is far from being understood, and frequently may be attributed to the formation of in-
homogeneities and magnetic clusters. More elaborate theoretical models show the exchange
interactions to be very short-ranged, which inhibits a magnetic percolation and results in very
low Curie temperatures for a homogeneous spatial distribution of the magnetic dopant atoms
[48] (Fig. 11a, b) — in contrast to the predictions from mean-field approximations. In order to
explain the higher 7--values observed in some experiments, for example, spinodal decomposi-
tion mechanisms have been proposed leading to the enrichment of nanosized regions with the
magnetic dopant and thereby enabling a magnetic percolation in one (Konbu phase) or three
dimensions (Dairiseki phase) [48].

4.2.3 Multiferroics

Multifunctionality is found also in other material classes. Of particular interest for spintronics is
the phenomenon of multiferroicity, which describes the simultaneous presence of ferroic prop-
erties, such as ferromagnetism, ferroelectricity and ferroelasticity [49]. This situation involves
a complex interplay of a spontaneous magnetization M with a spontaneous electric polarization
P and ferroelastic lattice distortions € (Fig. 12). This coupling of physical parameters gives
rise to fascinating effects, such as the magneroelectric effect, which creates a magnetization M
through an electric field E. Vice versa an electric polarization P may be created by subjecting
the material to a magnetic field H. We may thus think about entirely new device paradigms,
for example, electric field controlled magnetic data storage based on multifunctional tunneling
contacts [50]. However, attempts to design multiferroics that combine ferromagnetism and fer-
roelectricity in the same phase have proved unexpectedly difficult, as either the ferromagnetic or
ferroelectric Curie temperature 72! or T is usually well below room temperature. Exemplary
materials, which have been experimentally addressed show a coexistence of antiferromagnetism
and ferroelectricity, such as HoMnOs (T = 72 K, TE = 875 K) or BiFeO3 (T = 640 K,
T, g = 1100 K). In BiFeOj3 a clear influence of electric fields on the antiferromagnetism has
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been shown already [51].

Ferroelectricity

Fig. 12: Interplay of elastic,
electric and magnetic interac-
tions in a multiferroic material,
leading to interdependencies of
the spontaneous magnetization
M, the spontaneous electric po-
larization P and the strain €

Ferroelasticity Ferromagnetism

The recent advances in the preparation and characterization of well-defined thin oxide films
have enabled to a new research strategy in the field of multiferroicity, building upon layer
stacks of ferromagnetic and ferroelectric thin films [52]. This approach promises an indepen-
dent optimization of the ferroelectric and ferromagnetic properties and thus a chance to taylor
the functionality of the thin film stack within a broader range of the physical parameters.

4.2.4 Carbon-Based Materials

Carbon as an element is a particularly interesting substance for spintronics, mainly because
of two reasons. First, it provides a wide variety of allotropes (fullerenes, nanotubes, graphite,
diamond), all of which have already been studied to some extent with respect to magnetism
and spin-dependent transport. Second, carbon has a low nuclear number, rendering it a material
with small spin-orbit coupling and therefore potentially good spin-transport properties. In fact,
an efficient spin-injection into carbon nanotubes and spin transport through tubes of several
100 nm length has been successfully demonstrated already [53, 54]. This also includes the
electric field control of the spin transport by means of electrical gates [55]. Carbon nanotubes
can also be employed to define quantum dots and are therefore predestined to study the interplay
of quantum and spin transport.

The allotrope graphite has a peculiar structure, as it is composed of graphene layers, which
are only weakly bound to each other by v. d. Waals forces. Graphene consists of a monatomic
planar sheet of carbon atoms, which are arranged in a hexagonal lattice. Representing a two-
dimensional electronic system, graphene has a very unique electronic structure with the Fermi
surface consisting of Dirac points [56]. Electrons which are excited into the conduction band
close to the Fermi level thus behave like massless Dirac fermions. First studies on the spin
transport through single graphene layers have recently revealed extremely large spin relaxation
lengths in the pm range even at room temperature [57]. This finding makes graphene an ex-
tremely compelling system for spintronics applications.

Carbon is also the basis of all organic chemistry, which is employed to synthesize new molec-
ular entities. Organic thin films have already found major applications in microelectronics, for
example, in organic light-emitting diodes (OLED) used in modern displays [58]. Another area



Introduction 1.15

PRESENT
magnetic sensors innovative device concepts quantum information
nonvolatile memory “l. e.g. magnetologic A pracessing
(short term) (long term vision)

nanoferronics

spin spin  spin

GMR TMR torque inject. Hall
_ layers interfaces quantum wires
interfaces nanostructures guantum dots
degree of spin control >

Fig. 13: Present status and potential future developments in the field of spintronics.

of current research concerns molecular electronics, in which the charge transport through single
molecules is investigated [58]. On the other hand, the field of molecular magnetism would be
unthinkable without metallorganic chemistry [59]. However, spin-dependent transport through
organic layers and molecules is just moving into the focus now. There are considerable im-
provements in the theoretical understanding of spin transport phenomena through molecules
[60]. Despite some successful observations of magnetoresistance effects in certain systems
[61], however, the experimental realizations are still lagging behind. This is mainly due to the
structural and chemical complexity of the interfaces in such organic layer systems and contacts,
which often impairs the sample quality. Careful in-depth characterization of these interfaces
will be needed to arrive at well-defined and reproducible synthesis procedures [62].

S Future developments

Today, both giant and tunneling magnetoresistance have reached the market. The second gener-
ation of spintronics-based hard disk read heads is already based on magnetic tunnel junctions.
Strong efforts are directed towards the development of MRAMs (Fig. 13). The future evolu-
tion of spintronics aims at improving the degree of spin control with a long-term perspective
towards quantum information processing. On this pathway, there are four major topics to be
dealt with. First, the reduction of lateral and vertical dimensions of the magnetic elements re-
quires the investigation of fundamental questions of magnetism on the nanoscale. Second, the
microscopic mechanisms of spin transport and transfer processes and particularly the issue of
spin coherence needs to be explored. Third, the dynamical behavior of magnetic and spin sys-
tems must be understood in order to overcome the limitations of magnetic switching processes.
Fourth, the area of nanoferronics addresses the microscopic mechanisms of multiferroicity and
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the implementation of multifunctional components into spin transport devices. Of course, these
four topics are strongly interrelated and will be cross-fertilizing each other.
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1 Introduction

Since the word “ spintronics’ comprises both the spin and its carrier, the electron, in aword that
promises application — like electronics — it is natural to start a series of lectures on spintronics
with a general introduction on the electronic states in solids. In a periodic crystal these states
are characterized by their momentum, their spin, and one additional quantum number (the band
index) which set the playground for important effects in spintronics, like magnetoresistance or
spin-flip scattering, and constitute the materials to build spin-filters, spin-valves, spin-FETSs etc.
In the last forty years “band-theory” became an indispensabl e tool for the description and char-
acterization for many states of condensed matter, be it (band) insulators, semiconductors or
metals. Also in so-called strongly correlated electron systems, where a subset of states shows
correlation effects that are typically not covered by band-theory, a proper description of the
more delocalized bands is indispensabl e since the unique material properties are determined by
the coupling of the localized, correlated states to these bands. While these theories started as
more conceptual tools for the understanding of the solid state, nowadays advances both in the-
ory and (computer) simulation techniques made it possible to predict electronic (and magnetic)
properties on a quantum mechanical basis. Most notably, density functional theory developed
into areliabletool for material scientistswhich aim at designing materials with selected proper-
ties. In particular for spintronic applications we have to meet very specific demands which can
only be accomplished through an fundamental understanding of electronic states in solids.

Of course there are many materials — often with promising functional properties — that need a
theoretical description beyond the one given in this lecture. Some of the subsequent lectures
will cover part of these, like strongly correlated oxides. Mesoscopic quantum systems and their
properties, effects on more mesoscopic length scales (e.g. Hall effects) etc. will be discussed at
alater stage. Here, we deal mainly with the electronic ground state of matter from an atomistic
point of view. The discussion of magnetic phenomena will be left out except in connection to
spin-orbit coupling, where it natural to include also magnetic materialsin the discussion. Other
aspects will be covered by the contribution on the “electronic basis of magnetism”.

In afirst section we will ook at the basic properties of electronsin an infinite periodic lattice.
We will ignore their mutual interactions but incorporate the proper symmetry that defines the
guantum numbers (constants of motion) of the system in a nonrelativistic context. The interac-
tion between electrons is then the topic of the second section, where methods will be discussed
to treat Coulomb- and exchange interactions e.g. Hartree-Fock and density functional theory or
the GIW approximation. While up to that point the spin of the electron was just considered as
an additional quantum number, in the last section we will introduce the spin as areal vectorial
quantity that can be manipulated in utilized as required for spintronic applications. Since spin
is an inherently relativistic phenomenon, a theory on the level of the Dirac equation will be
required, which is outlined in the appendix.

2 Electronsin alattice

The electronic properties of a periodic solid are to alarge part determined by the symmetry of
the lattice that is formed by the atomic nuclei. They create a periodic potentia in which the
electrons (in particular the most loosely bound valence and conduction electrons) are moving.
The constants of motion of such a system are determined by the symmetry, here in particular
the tranglation symmetry in the crystal. Therefore, we start with a discussion of the symmetry
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properties of a crysta that leads us to Bloch’s theorem and illustrate these considerations for
the case of a nearly free electron gas. To be specific, we present a couple of prototypical band
structures to see how — even in the presence of electron-electron interactions— many properties
can be inferred from the crystal symmetry. For a more extended treatment of these topics, the
reader isreferred to standard textbooks on solid state physics, e.g. Ref. [1].

2.1 Trandation symmetry

The structure of an infinite periodic crystal can be considered as a space filling repetition of
non-overlapping units cellsin three dimensions. The origin, R, of an unit cell can be written as

ail a2 a3 ny
R,=A4n ; where A= a91 Q99 (93 and n= N9 (1)
a31 32 a33 n3

wherethe n; areinteger numberslabeling the unit cell and A isthe Bravais matrix of the crystal.
In each unit cell n, afinite number of atoms (denoted by «) are located at positions

I'no = Rn+ Tao 2

and the vectors T, are called the basis of the lattice. A crystal, that can be described by equa-
tions (1) and (2), isinvariant under an infinite set of symmetry operations which can be classi-
fied astrandations, 7', and (proper and improper) rotations, R, and combinations of these two.
Here, we will focus on the tranglations, which act on some function in real space, f(r):

Tr,f(r) = f(r + Rn). ®3)

The Hamiltonian of the electronsin aperiodic solid consists of three parts. the kinetic energy of
the electrons, 7', their mutual Coulomb repulsion, V,_. and the potential created by the nuclei,
Vext- Thefirst two parts of the Hamiltonian are invariant with respect to any trandlation, but the
latter term will only be unchanged if the translation vector is alattice vector, R,:

TRn‘/ext<r) = ‘/ext<r + Rn) = ‘/ext(r) . (4)

Therefore, the total Hamiltonian, H, commutes with the translation operator 7g,, and both
operators will have common eigenfunctions.

To find the eigenvalues «y of the translation operator, we consider the successive action of two
trandlation operators on a function:

Tr, Tr.f(r) = Tr,7(Ra)f(r) = 7(Ruw)v(Rn)f(r)
Tr, TR, f(r) = Tr_+r.f(r) =7(Ro + Rnp)f(r). ©)

Thefact that v(Ry )v(Ra) = 7(Rw +Ry) suggests, that the vectors R appear in an exponential
formin~,i.e.
Y(Rp) = e (6)

If we consider, that f is a normalized function, ¢(r), that should not grow or vanish expo-
nentialy in an infinitely extended solid by applying a transation, we can assume that P is an
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imaginary quantity and writeit asik. We can use thisvector k to label the functions ¢ according
to

TraOk(r) = €T gy (r). (7)
The matrix elements of the Hamilton operator with two such functions should be invariant to a
lattice trangdlation, i.e.

(D () Hon(r)) = (Treare () 1| T, (1) = (™ o (1) He ™ g (r) )
= U (g (1) H] () te)

which means, that either the exponential factor isunity or the matrix element must vanish. From
the translation symmetry properties of the lattice we can thus conclude, that we only get non-
vanishing matrix elements, if R, - (k — k') = 27N, if NV is some integer number. The latter
condition can be brought into a slightly different form, if we write

R,=An ;: k—-k=Bm and AB=2rl 9)

where 1 isthe 3 x 3 unit matrix and B defines a lattice, where the lattice vectors are given by
K., = Bm for integer vectorsm. Thislatticeis called the reciprocal lattice and K,,, is caled
areciprocal lattice vector. To get non-vanishing matrix elements, k — k’ must be a reciprocal
lattice vector.

This result will help us in two ways: firstly, this results holds for al kinds of operators, that
commute with the translation operator, i.e. (¢ |O|¢k) isonly non-vanishing, if k — k' = K,y,.
E.g. if O describes some excitation of the crystal and the ¢’s are wavefunctions of the ground-
and excited state, we can derive selection rules from this symmetry. Secondly, if we consider
that ¢, isatrial function for the solution of the Dirac or the Schrodinger equation, we can im-
mediately block-diagonalize the Hamiltonian in blocks of wavefunctions, where the difference
of two wavevectorsk and k’ isareciprocal lattice vector. Thisallows usto restrict the values of
k to the smallest ones in each block and to use this vectors as quantum numbers that |abel the
wavefunctionsin the solid. The volume filled by these k-vectorsis called Brillouin zone and it
isthe equivalent of the Wigner-Seitz cell in real space, but now in reciprocal space.
Thereciprocal lattice is particularly useful to describe lattice periodic functions:

u(r) = Z EmTy(Ky) since u(r+Ry) = Z Km (t+Ra)y (K Y = w(r).  (10)
Km Km

We can now write the eigenfunctions of the trand ation operator according to equation (7) as
TRn¢k(r) = TRn (eik'ruk(r)) = eik'R"eik'ruk(r) = eik'R"¢k(I‘) . (11)

Functions of the form e’ T, (r) are called Bloch functions. They are the eigenfunctions of the
translation operator 7r, and play an important role in the electron theory of periodic solids.
Since we know that 7g,, and the Hamiltonian commute, also the eigenfunctions of H can be
written in thisform:

Horw(r) = cutie,n(t) 5 dren(r) = ™ up,(r) . (12

Thisis called Bloch's theorem. We introduced an additional quantum number v to distinguish
the different solutionsthat belong to the same vector k. They will correspond to different values
of uy . (Kym) in equation (10).



Electronic Statesin Solids Al5

Energy

>
== |
=

01 .05 0 0.5 1 1 -05 0 05 1

k (2/a) k (2/a)

Fig. 1. Band structure of a free electron gas (left) with three parabolic bands, originating from
reciprocal lattice points outside the Brillouin zone (BZ, white). In the case of a nearly-free
electron gas, i.e. in the presence of a periodic potential, the degeneracy of the bands at the BZ
boundaries and at the origin will be lifted (thick lines, right panel).

Let usillustrate these points with the simplest possible example, a non-interacting electron gas
in an uniform potential, V. Since the wavefunction is separable, it is sufficient to study the
Hamiltonian for asingle particle, that is of the form

hQ

ViV, (13)
2Me

H = —

Omitting the constant potential and using atomic units (= = 1, m. = 1) we can write the
Schrodinger equation with Eq. (10) and Eqg. (12) as

1 )
_§V2 (Z eZ(k+Km).ruk,u(Km>> B

Km
1 ) )
5 Z(k + Km>2eZ(k+Km).ruk,ll(Km) = Euy Z e’(k+Km)'ruk7,,(Km) _ (14)
Km Km
To fulfill Eq. (14) for each K,,, we get a solution
1
flr = 3k + Kun)?, (15)

i.e. the eigenvalues can be described as parabolas in k-space originating at reciprocal lattice
points. Thisisillustrated in figure 1 in one dimension: if we restrict our description to the first
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Brillouin zone (BZ), we observe that for each k-vector we obtain an infinite, but discrete set of
eigenvalues. At each k-point, we can label these eigenvalues with the band index v increasing
with energy. A set of eigenvalues with the same index v is caled a band. At the boundaries
of the BZ we observe band crossings, which will —in general — disappear for more realistic
potential's (see next subsection).

Before we study the effect of a non-constant potential, it is instructive to study the problem of
the free electron gas with a different choice for the wavefunctions. Although planewaves are
a perfect solution to the free electron problem, in many real situations the eigenfunctions can
be regarded to be derived from atomic wavefunctions, s, p, d, or f-like. Of course in a crystal
they form linear combinations that have to fulfill Bloch’'s theorem, i.e. if we start from atomic
functions x(r) centered on lattice sitesR,,,, we choose aform

oi(r) =™y x(r—Ray). (16)

E.g. if y isaspherica s-like function, it is modulated by the k-dependent “Bloch factor” with
a period of 27/k throughout the crystal. In the spirit of the tight-binding approximation, it is
convenient to write

u(r) = <= 3 My (e = Ry, (17)

where N isthe number of lattice sites in the sum. This allows us to estimate the energy as the
expectation value of the Hamiltonian:

20) = 1 3 (MR (e — R MMy (r — Rug)) = 3¢ (1) [H]x(r — Ra)

| (18)
Assuming a linear chain of atoms with a lattice constant a, where only the nearest neighbor
atoms have significant overlap, this reduces to

e(k) = (x(r)[H[x(r)) + " (x(r)[H|x(r — a)) + ™" (x(r)[H|x(r +a)) . (19
Since the nearest-neighbor integrals are identical, we can write
e(k) = a+23cos(ka) where o= (x(r)H|x(r)) and 5= (x(r)/H[x(r+a)). (20)

For a s-type wavefunction, (5 is negative and « is lowest at £ = 0. With increasing k the
energy increases and reaches its maximum at k£ = 7 /a. The situation is similar to planewave
description, although the energy is too high now at the zone boundary, where the Bloch factor
forces the s-type wavefunction to disappear at every second atom, since it cannot describe
the node at this position properly. At this k-point, a p-type wavefunction would be required.
Such “odd” functions have a positive 5 and their energy decreases from & = 0 towards the
zone boundary, like indicated in the second band in figure 1. As we will see later, realistic
bandstructures of simple metals indeed start at low energies with a parabolic, s-type band,
followed by three inverted parabolas that correspond to p-type states. Many properties of the
valence electrons of these metals can be found in the simple free-electron picture of this section.

2.2 Nearly free electrons

Of course, the electrons in a crystal feel a periodic potential that differs considerably from out
constant model potential. The attractive potential of the nuclei is partialy screened by energet-
ically low-lying core electrons, i.e. the valence electrons “feel” a potentia that is smoothed by
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electrons that are bound closely by the nuclei. Thisisthe external potential, V.., encountered
in Eg. (4). Sinceit has|lattice periodicity, it can aso be expanded in reciprocal lattice vectors:

Vst = > eV (Kyp) . (21)
Km
Adding this potential term to the Hamiltonian modifies Eq. (14) and we get

1 | | /
Z <5k,u - §(k + Km)Q) Upe (K )@/ HKm)T — Z Z V(K Yt (K)o Ot Km Kn)r.

Km Km K/,
(22)
Introducing K, = K!  + K,,,, wewrite theright part of Eq. (22) as
DY VK e (K, — K, e () (23)

K// /

Substituting back K,,, < K” and comparing the coefficients with the |eft side of Eq. (22) we
obtain

(a(y — %(k + Km)2) U, (Km) = Z V(KL )k, (Km — K. - (24)

For the case of a constant potential, we set VV(0) = 1}, and all other Fourier coefficientsto zero.
In this case, Eq. (24) reducesto

(ek,y loer Km>2) e (i) — Vit (Kon) (25)

which corresponds, apart from an additional constant 14, to Eq. (15). Eigenfunctions are again
planewaves with wave vector K,,,, i.e. the Fourier coefficients for the expansion of the wave-
function, uy , (K.,) for acertain state v are unity for a specific K,,, and zero otherwise. If we
consider uy, as a matrix with dimensions v and K,,,, we find that for the case of a constant
potential v, isthe unit matrix 1 (we denote matrix quantities here and in the following with an
underline).

If the potential is of general shape, the expansion coefficients uy , (K,,) can be obtained from
Eqgs. (24). We can rewrite these equations using 3 (k + Ky, )? = en k., intheform

(ek — eh k., ) i (K Zv K/, — Ku)u, (KL . (26)

If we write V' in matrix form and consider » and <° as vectors, this equation can be rewritten in
the form of a standard eigenvalue problem:

(K + Elo(l) Uk, = €k Uk,p - (27)

Let us finaly analyze, how a weakly varying potential affects the bandcrossingsat £ = 7/a
in figure 1. The lowest bandcrossing is formed by a parabola originating at K,, = 0 and a
parabola that has its minimum at K,,, = K;. In the vicinity of the crossing, we denote the
(unperturbed) eigenvalues of these two statesas e, = Vi + ¢ and . = V; + e . Ignoring all
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other states, the potential matrix V" will be a2 x 2 matrix which has diagonal elements 1}, and
off-diagonal elements V_k, and Vi, . Eq. (27) has then the form

Vo+ey Wk Ug Up
! = . 28
( Vok, Votek, ) ( uK, “\ uk, 29
This problem can be solved by setting the determinant to zero:

0
ey —¢  Vk,

0

= 29
Vg, € —¢ 0 (29)

resulting in

el +&Y €9 — 02
€12 = +2 :f:\/( +2 ) +‘VK1|2 (30)

In case the two eigenvalues ¢} and ¥ coincide, the non-constant potential will lift this degen-
eracy and lead to asplitting of +|Vi,|. If |Vk, | issmall compared to e —<°, e.g. k isfar from
the zone boundary, the effect will be small. Likewise, the interaction with other bands, that
are energetically far away, will be small and our assumption to consider just two bands near a
crossing will be justified.

Of course, in realistic bandstructures more than two bands can be energetically close and not all
potential Fourier coefficients will be small, so that more complicated interactionswill occur. In
this case, it is necessary to solve Eqg. (27) infull.

2.3 Bandstructures of selected systems

To visualize the effects of the crystal lattice, we shortly discuss here two simple examples of
bandstructures. First, we consider the sodium crystal, which is body-centered cubic and has
avery low vaence electron concentration. In contrast, the face-centered cubic copper crystal
contains eleven valence electrons, some of them rather closely bound, being rather far from the
free electron gas limit.

First we discussthe electronic structure of sodium, whichisasimple metal from thefirst column
of the periodic table. All the metals in this row crystallize in a bcc lattice and with a single
valence electron per atom. Thus, the Na bandstructure is prototypical for these elements, like
K or Rb [2]. Dueto its low electron density (the s-electrons are typicaly very delocalized in
metals), it isalready very close to an aimost free electron gasin a periodic lattice.

The bandstructure in figure 2 has been obtained by density functional theory (DFT), that will be
outlined in the next section (3.2). As can be seen from this figure, the bottom of the occupied
band is almost parabolic, as expected for a free-electron like dispersion. We see, however, that
gaps are opening at the boundaries of the Brillouin zone, e.g. at the N-point. Above the s-band
three downward dispersing p-bands can be observed with very different dispersions. E.g. in I'N
direction, only one band reaches down to the s-band, while the other two bands remain above
8 eV.

We should notice, that even in this very simple case one has to be careful when comparing
singe-particle eigenvalues (figure 2) with experimental photoemission results: While the Fermi
surface, i.e. the surface that is created by all states k, v which fulfill the condition ey , = Ep,
isin very good agreement, the bottom of the s-band is too low as compared to the experiment.
Photoemission results show that 2.5 €V are required to excite an electron at the I'-point to the
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E-Er(eV)

Fig. 2: Band structure of sodium (left) and the reciprocal unit cell of the bcc lattice with high
symmetry points and lines (right). The right image was taken from the Bilbao Crystallographic
Server [3].

Fermi level, while the DFT eigenvalueis at about —3.2 eV [4]. Methods to calculate excitation
spectrawill be shortly discussed in subsection 3.4.

As a second example, we show in figure 3 the band structure and Fermi surface of fcc Cul.
Again, we can see that the bottom of the valence band is formed by a parabolic s-type band,
but between —1.5 and —5.0 eV flat d-bands are crossing. Due to symmetry some of these five
bands are degenerate at the displayed high-symmetry lines and points, e.g. a the I'-point a 3-
fold and a 2-fold degenerate state (corresponding to ¢,, and e, symmetry) can be seen. It might
be interesting to notice, that the bandstructures of the three coinage metals Cu, Ag, and Au are
rather similar, only in the case of Ag the d-band is shifted about 2 eV further away from the
Fermi level. This accounts for the different colors of these metals, i.e. the smaller the energy

E-Eq(eV)

Fig. 3: Band structure of copper (left) the Fermi surface (right, red) with the reciprocal unit
cell of the fcc lattice in blue and the high symmetry points and lines (yellow).
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difference between Fermi level and the d-band, the more reddish the color. Density functional
theory reproduces this trend reliably, provided that in case of Au scalar-relativistic corrections
(cf. Appendix) are included in the Hamiltonian [5]. The Fermi surface of Cu is not spherical,
asinthe case of Na, but shows characteristic necks which can aso be observed in De Haas-Van
Alphen oscillations experimentally. Again, the electronic structure at the Fermi level is quite
reliably described by the calculation.

3 Interacting electrons

In any realistic calculation, we cannot simply ignore the mutual Coulomb repulsion of the elec-
trons and we have to include the term

1 1
Veee = = E 31
2 oy |I‘Z‘ — I'j| ( )

in the Hamiltonian (since we work in atomic units, e? = 1). Thisdestroysthe separability of the
wavefunction and the straightforward quantum mechanical treatment of the electronic degrees
of freedom is limited to a very small number of particles. Thisis mainly due to the appear-
ance of the manybody wavefunction ¥ (ry, ro, . . ., ry ), which contains atremendous amount of
information and is difficult to handle for V larger than afew dozen or so.

One can try to construct ¥ from single particle wavefunctions and combine them to manybody
wavefunctions of different complexity: asimple product Ansatz, ¥ = ¢;(r1)¢s(rs) ... dn(rN),
leads to the so called Hartree approximation. Unfortunately, this form of the wavefunction is
not compatible with the Pauli principle, i.e. interchanging two arguments of ¥ does not lead
to — V. In the Hartree-Fock (HF) method, the wavefunction has the form of a determinant of
aN x N matrix of single particle wavefunctions ¢, (r,) with1 < p, v < N, which ensures
that the Pauli principleis fulfilled. Therefore, the HF method leads to better results (e.g. bind-
ing energies) than the Hartree method. The energy contribution missing in the latter method
as compared to the former one is called exchange energy. Although the HF method is numeri-
cally quite complicated, the obtained energies are still often quite far from the true ground state
energies. What is missing is called correlation energy and the results can be improved by e.g.
constructing the manybody wavefunction as a linear combination of many determinant func-
tions. These so called configuration-interaction (Cl) methods can be systematically improved,
but the numerical effort is huge. While the HF method scales nominally like N*, calculational
schemes that include correlation scale with N° (second order Mgl ler-Plesset perturbation the-
ory) or N7 (Coupled Cluster theory). A good account of these quantum-chemical methods can
be found in the article of V. Staemmler in Ref. [6].

A completely different approach is taken by the density functional theory (DFT): athough in
most cases the true wavefunction is impossible to access, this poses no fundamental limitation
since normally we are not interested in W, but in alimited number of physical observables. Den-
sity functional theory therefore bypasses the troublesome manybody wavefunction and starts
directly from the density of the particlesin question (in our case el ectrons) allowing thereby the
treatment of alarge number of particles.

Aswe will see, DFT is quite suitable to describe the many aspects of the electronic structure.
Also structural properties, like lattice parameters, that can be obtained from total energies are
very well accessible in DFT, since the total energy is a quantity that has a definite meaning in
this theory. In metals also other electronic properties are reproduced well, mainly due to the
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Fig. 4: Left: LDA bandstructure of S around the Fermi level. Note, that the fundamental gap
is indirect, as found experimentally, but the experimental gap is a factor two larger than the
calculated one. Right: Calculated bandgaps in DFT (LDA) and the GW-approximation for
several insulators and semiconductors as a function of the experimental gap (data taken from

Ref. [7]).

fact that they are dominated by states near the Fermi level. Evidence, that these el ectrons can be
gualitatively described in an independent particle description (similar to the “particles’ in DFT)
comes from Landau’s Fermi liquid theory [1].

In insulators or semiconductors, we are typically interested in states far away from the Fermi
level which cannot be expected to bear very close resemblance with the single particle states
described by DFT (and aso other methods that will be discussed below). As an example, we
show in figure 4 the bandstructure of silicon. Although DFT can describe many properties of Si
reliably (e.g. the lattice constant or the I'-point phonon turn out to be in good agreement with
the experiment), the experimental bandgap is a factor two larger than the energy difference be-
tween the highest occupied and the lowest unoccupied state. This does not mean, that the DFT
bandstructure would be useless, it “predicts’ correctly the nature of the bandgap as indirect be-
tween the I"-point and the I"X-line, but the valence and the conduction band are too close by the
same amount throughout the BZ. This close resemblance between cal culated bandstructure and
experimental data lead to the fact, that the too small bandgapsin DFT are often called a“DFT
problem” but of course, these bandstructures simply do not describe the electron-removal or
electron-addition process that defines the bandgap. Other methods, like the GV approximation
to manybody perturbation theory are available for this purpose and will be described at the end
of this section.

3.1 TheHartreeand the Hartree-Fock approximation

Let us start with the many-body Schrodinger equation for the electrons

. 1o
Z (h + — Z |rZ — r]|> =0 with hz = —§VZ + ‘/ext(ri) (32)

Z#J
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where V., (r) includes the potential arising from the interaction with the nuclei and other
possible external potentials. Assume that we found solutions to the single-particle Hamilto-
nian h; and denote them ¢;(r;). Then, we can try to construct ¥ from these single particle
wavefunctions and combine them to a manybody wavefunctions by a simple product Ansatz,
U = ¢1(r1)g2(rz) ... On(rn).

Ignoring the interaction part in Eq.(32) for the moment, we study a system of independent
electrons. Then, if we multiply from the left with all single particle wavefunctions except one
(e.0. ¢;) and integrate over al r’'s except r;, we arrive at a set of equations

hii(rs) = (e = Y _e;)dilri)  where  h;o;(r;) = €;60;(r;) . (33)

J

In this case, the eigenvalue of the manybody wavefunction, ¢, is obviously the sum of all single
particle eigenvalues, ¢;. Given the fact that electrons are fermions and cannot occupy a state
more than once, this means that the ground state of our system will be the one that has the
lowest N single particle states occupied.

Now, if we reintroduce the electron-electron interaction and go through the same steps, we get
acoupled set of equations

(i + Vi(ri) dirs) = (e = D e)ai(m)  with Vi) = > <¢j<rj>'7|r‘ - o] ‘¢f<rf>>
P J#i L
(34)

where V;(r;) is the potential created by all electrons except the one described by ¢;. Solving
these equations is already a complicated task, but a considerable simplification can be achieved
if we assume that in an infinite solid there are so many electrons in the system, that we can
assume that every electrons “sees’ the same potentia arising from all the states

Vu(r) = Z <¢j(rj)\;]¢j(rj)> : (35)

- r— 1]
This leaves asinge equation for all states

(h+ Va(r)) ¢i(r) = igi(r) (36)

which hasto be solved self-consistently. Thismeans, since Vj; —the Hartree potential — depends
on the states ¢;, first a guess for this potential has to be made (e.g. for states calculated in
the independent electron approximation), and then EQ.(36) can be solved initially. With the
solutionsin the next iteration a new, better guess for V; can be obtained and this process can be
repeated until the potential does not change any more from one iteration to another.

What we can learn from this so-called Hartree method are two things: in some approximation
we can retain the notion of single-particle states and occupy them by an Aufbau-principle to
construct a manybody wavefunction. In a self-consistent scheme, equations for these single-
particle states can be solved to obtain a solution iteratively. The other lesson to learn is, that
already asimple product Ansatz is very difficult to handle unless we make approximations, like
substituting the state-dependent potential V; by the Hartree potential, 14, thereby introducing
some self-interaction of the single-particle states.

However, thisis not the most severe shortcoming of the Hartree method: as mentioned above,
the biggest approximation we introduced in the beginning by choosing a simple product Ansatz.
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This construction of the many-body wavefunction of N non-interacting electrons still suffers
from a serious problem in the treatment of the fermionic nature of the electrons. The simple
product of single-particle states does not fulfill a basic requirement for fermions which states
that the many-body wavefunction has to be anti-symmetric under the exchange of two particles

VX1, Xy oo, Xy oo, XN) = —W(Xq, .00, X, o, Xy, X)) (37)

Gy

where we introduced x = (r, o) to denote the combination of the spatial and spin degrees of
freedom. For the moment it is sufficient to consider the spin, o, simply as a label that can
assume two values.

However, it wasrealized early by Slater [8], that an anti-symmetric linear combination of prod-
uct wavefunctions can be constructed, which has the desired property. This construction is
known as a’Sater determinant’ as it can be expressed in terms of a determinant of a matrix
containing the single-particle states

. ¢1(.X1) B ¢1(?<N)

‘IJSIater(Xl---XN) = == : . :
YN ) . o locn)

- ﬁZ(—l)PP (61(1) .. () (38)

In this notation the sum is performed over al permutations P acting on the indices i of the ¢;.
The factor (—1)” ensures the required anti-symmetry.

The Slater-determinants as given in Eq. (38) form an anti-symmetric solution of the non-
interacting Schrodinger equation. It can be shown that using all possible combinations of
single-particle wavefunctions these determinants form a basis of the space of the V-body wave-
functions so that the interacting many-body wavefunction can be expressed as a linear combi-
nation of Slater determinants. Such an expansion forms the basis of complicated and expensive
computational methods like so called configuration interaction calculations which yield high
accuracy but can be performed only for a small number of electrons V.

Using these determinant functions to find a solution for the Hamiltonian as shown in EQ.(32) is
the essence of the Hartree-Fock method. The derivation of the equations is somewhat lengthy
but rather straightforward. The strategy isto vary the functions ¢ to make the expectation value
of the many body Hamiltonian (| H|¥) an extremum under the constraint that the functions ¢
are normalized to unity. This constraint is introduced by an Lagrange multiplier ; , for each
¢:... Thisleads then to the so called Hartree-Fock equation

v —r'|

(=577 Voult) 4 Vo)) nolr) + 3 [ 5 (0050 () 1 0) = rnbin(r) . (@)

It isthe last term on the left side of EQ.(39) that introduces the physics missing in the Hartree
method. It can be rewritten to give the equation a more familiar form:

<—%V2 + V@Q(I‘) + VH (I') + Ve((r; ZO')) (bw(r) = 5i,a¢i,a(r) . (40)

In addition to the non-interacting single-particle Hamiltonian two additional single-particle po-
tential terms appear which describe the Coulomb interaction. The first one we know aready as
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the Hartree potential. The second term, the so called exchange potential, is a combined effect
of Coulomb interaction and the antisymmetry condition and can, therefore, not be interpreted
classicaly. Thisterm can be written

1

1 (r) 2 <¢i,g(r)¢j,g/(r’)\—\@,a(r’)w (r)> (41)

Velrii0) = = g @) To7]

J,o’

where the integration (()") is assumed over r’. If the summation in Eq.(41) would be restricted
to the term ; = 4 only, we would recover Eq.(34) indicating that the exchange potential in the
Hartree-Fock method contains a self-energy correction. Again we arrive at a state dependent
potential, that can be thought to originate from a (nonlocal) charge density

v L85 )01 ()50 ()
() =2 O R “

nex has the property that it integrates to unity, so it corresponds to the charge of a single elec-
tron. Furthermore, for a spin o and the limit r = r’ it reduces to the state-independent value
> i 5 5(r)d;(r). Thischarge density isalso called the exchange hole, describing the influence
of astate i, 0 when moving through the ensemble of al statesin the system. We will encounter
the exchange hole once more in the context of density functional theory where it appearsin a
state-independent form, actually very similar to Slaters idea [9] of a state-averaged version of
Eq.(42) that inspired aso the conception of the first exchange-correlation potentials for DFT.
Interestingly, even though this simple construction of the many-body wavefunction as a Sater
determinant only describes non-interacting systems, the description of the complicated many-
body interaction in terms of single-particle states ¢, is a rather useful and powerful concept
frequently also used for the case of interacting particles. This success of the single-particle
description of the interacting system is even more surprising if one considers the both very
strong and very long-range character of the Coulomb interaction. It can be understood and
explained by the theory of Fermi-liquidsintroduced by Landau [10].

J,o’

3.2 Dengdity functional theory

While many researchers were working on more tractable versions of the Hartree-Fock method,
in the middle of the sixties Hohenberg and Kohn [11] worked out two central theorems that
form the basis of a conceptually different approach, the density functional theory: Consider
a system of N particles (e.g. electrons) moving in an external potential V' (r) (caused by e.g.
nucle). In a non-degenerate ground state (i) the many-body wavefunction ¥ and V' (r) are
uniquely determined by the particle density distribution n(r) and (ii) there exists an energy
functional of this density, E[n(r)], which is stationary with respect to variations of the ground-
state density. These two theoremsallow —at least in principle— the determination of the ground-
state density and energy of a N-particle system by searching for the density that minimizesthe
energy functional. Extracting the classical Coulomb interaction energy, this Hohenberg-Kohn
energy functional takes the form

Eln(r)] = / v;xt(r)n(r)dr+% / / %dWﬂﬂ}@@)} (43)

where the functional G'[n(r)] contains all other contributions.
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If we succeed to find the functional G[n(r)] or agood approximation to it, theimmediate advan-
tage of DFT isthat, instead of dealing with the full manybody wavefunction, ¥ (rq,rs, ..., ry),
we can work with the much more tractable density, n(r). Although more information isdirectly
accessible from the wavefunction than from the density,

n(r) = /drg.../drN\If*(r,rQ,...,rN)\Il(r,rQ,...,rN) (44)

in DFT many physical quantities, like the structural properties or bond strength can be obtained
for large systems, where a manybody wavefunction would be impossible to access. E.g. cal-
culations of the ground-state energies for different external potentials, as they result from a
variation of the lattice parametersin aperiodic solid, allow the determination of the equilibrium
|attice constant, which is nowadays possible to within afew percents. Early attempts to use the
density as akey parameter for calculations of periodic solids were made by Lenz [12] based on
the statistical method of Thomas[13] and Fermi [14]. In thisapproach, G[n(r)] was considered
to contain the kinetic energy density (taken to be proportional to [n(r)] 3). In the Thomas-Fermi-
Dirac method G[n(r)] even contains an exchange energy density term proposed by Dirac [15]
(proportional to [n(r)]%). Although the Thomas-Fermi theory has still its applications today, it
never became useful as atheoretical method for the prediction of materials properties[16].
The key idea, that made DFT a success, was to extract from G[n(r)] the kinetic energy 7}, of a
non-interacting electron gas in its ground state which has the same density distribution, n(r), as
the interacting system. In this Kohn-Sham theory [17] a new functional

Exye[n(r)] = Gn(r)] — To[n(r)] (45)

appears, that remains to be determined. E,. is a much smaller term than G and is called
exchange-correlation energy functional, since — as we will see below — without F,. our en-
ergy functional £ would yield just the energy in the Hartree approximation. If we take into
account that particle conservation, i.e. N = [ n(r)dr, has to be ensured, we can formulate the
stationarity of £ in equation (43) with respect to variations of the ground-state density, n, as

5T, n(r')
sy TV +/ TV

OE
= A= 46
on(r) 0 (46)
where the Lagrange parameter \ ensures the particle conservation. Expressing the kinetic en-
ergy of the non-interacting particles via their wavefunctions, ¢;, we can recast equation (46) in
the form of an effective single particle Schrodinger equation, the Kohn-Sham equation:

) gy 5E"C] 6i(r) = 264(r) (a7)

1 2

2V Vi) +/ Ir —r/| on(r)
which has to be solved self-consistently since n(r) = S | |¢;(r)|%. From this point of view,
the structure of the Kohn-Sham equations is very similar to the Hartree approach outlined in
the last subsection. The index ¢ combines now the k-point, k, and the band index, . Note,
that without F,. equation (47) reduces to the Hartree equation. Therefore, this last term of
the Hamiltonian is called the exchange-correl ation potential, since exchange and correlation are
exactly what is missing in the Hartree approximation.
Although X\ was introduced as a Lagrange multiplier and also the ¢;’s should be strictly be
interpreted in thisway, itisusual to derivefrom the;’sthe bandstructure of acrystal and usethe
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wavefunctions ¢;(r) as approximations to true quasi particle wavefunctions. Some justification
will be given below and comparison with experimental data often confirms this point of view,
but there are also well known examples, where this interpretation leads to significant “errors’,
like in the comparison of the bandgaps of semiconductors and insulators with bandstructures
derived from these ¢;’s.

One of the first interpretations of the term, which emerged as the exchange-correlation poten-
tial in DFT, was given by Slater [16] in the context of the Thomas-Fermi method and later in
connection with the Hartree-Fock method [9]. Essentially, it describes the afore mentioned in-
teraction of a particle with the “hole” that is created by its own presence in the gas of the other
particles. This means, that the probability of finding an electron at a position r reduces the
probability of finding another electron at a position r’ nearby, depending of course also on the
spin of the two particles (therefore, in the Hartree-Fock method this hole, Eq. (42), has been
given the name “exchange hol€”).

To derive some properties of the exchange correlation energy functional, it isuseful towritethis
“hole” (exchange-correlation hole in DFT), n,., in terms of atwo-particle correlation function,

g(r,r") [18]: )
Nye (1, 1) = n(r')/o d€[gn(r, v, &) — 1] = n(r")h(r,r). (48)

Here, g,,(r,1’, €) isthe correlation function of a system of charged particles where the Coulomb
interaction is scaled by afactor ¢ and a&-dependent potential has been added, so that the density,
n(r), isindependent of £. Additionally, the so called hole function, i (r,r’), was introduced.
The exchange correlation energy can then be written as

Bulntw)] = 3 [[amniw) [ ar' i) (49)

Although the exchange-correlation hole can be very complicated in shape, it was soon realized,
that only itsradia dependence entersin the exchange correlation energy [19]. This means that
in practice E,. israther insensitive to details of shape of n,.. Some properties of the exchange-
correlation hole can be derived from the definition viathe correlation function g. E.g. thereisa
sum rule, which states that n.. corresponds exactly to one electron, i.e. that

/ dr'ng(r,r') = —1 (50)

hasto befulfilled. Such relations can guide the construction of exchange-correlation functionals
or help to judge the validity of existing approximationsto F,..

One of the big surprisesin the early days of density functional theory was certainly the fact, that
even asimple exchange-correlation functional like thelocal density approximation (LDA) leads
to relatively convincing results. The LDA startsfrom thelimit of the homogeneous el ectron gas,
assuming E. rather asafunction than as afunctional of n(r). Its success can now be explained
by the fact, that the exchange-correlation hole in the local density approximation is of the form

nge (1,1) = n(r)ho(|r — '[; n(r')) (51)

where h(|r — r’|; n) isthe hole function of an uniform interacting el ectron gas of density n. For
an uniform density, this exchange-correlation hole satisfies equation (50). For a non-uniform
density the sum rule should be at least approximately fulfilled and [20] showed, that in LDA



Electronic Statesin Solids Al1.17

thisis on average the case. This, together with the fact that E,. depends only on the spherical
average of n,., ismainly responsible for the success of the LDA.

Also modern, exchange-correlation functionals including gradient corrections are constructed
in such aform, that they fulfill certain conditionsthat are known exactly in different limits (like
high or low density, constant or slowly varying density etc.). In thisway, exchange-correlation
potentials are improved on a parameter-free basis. Alternatively, the functionals (or parts of
the functionals, e.g. the correlation energy) can be fitted to numerical results from manybody
calculations. Another strategy — often used in the chemical literature—isto adjust the functional
to yield best results (like bond-length, dissociation energies etc.) for a given set of systems.

3.3 Extensionsto DFT: the LDA+U method

Dedling with f and some d transition metals and their compounds it was realized that, while
the s,p and some d electrons can successfully be described in standard DFT methods, for
the strongly localized electrons a more atomic-like description (e.g. Hartree-Fock) is appro-
priate [21]. Taking into account the different atomic potentials and the stronger screening in the
metal, an atomic theory [22] for these localized states can describe the situation quite satisfacto-
rily. Following this approach, Anisimov et al. [23] merged this atomic picture with band theory
(i.e. standard DFT), to get a“band approach” to Hubbard-type models. For the localized d and
f states, the Coulomb interaction of the electrons is formulated in the spirit of the Anderson
model:

1
Eee = §U2nznj (52)

where the n’s are here the d-orbital occupation numbersand U is the famous Hubbard parame-
ter, describing the on-site Coulomb interaction. In the local density approximation to this model
the energy of the d — d interaction is[24]

1
EMPA — SUN(N —1) where N = > ni (53)

If we add E.. from equation (52) to the LDA energy functional, EXP* should be subtracted, so
that
1 1
LDA+U __ LDA
E —E +§U;nmj—§UN(N—1). (54)
1]

Thisis asimple version of the LDA+U method. Such a modification of the LDA resultsin a
shift of the LDA eigenvalues:

dE 1
€= - = GLDA +U <§ — nz) (55)

i.e. more than half-filled bands are shifted down in energy, while less then half-filled bands are
shifted up. Despite the formal similarity with the Stoner model, it should be noted that the
physical background of this model isquite different [23]. A simpleexampleisgiveninfigure5,
where the LDA+U method was used to correct the positions of the 4 f states in ferromagnetic
bce Eu. It is easy to see, that the correction has aimost no effect on the s and p states, but
shifts down the occupied 4 f states (an enhanced localization of these states can be seen by the
narrowing of the band) and pushes the unoccupied 4 f levelsto higher energies. How large this
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Fig. 5: Left: Density of states of bcc Eu calculated with standard LDA (dashed line) and the
LDA+U (full line) method. A Hubbard U of about 6 €V was used to correct the positions of
the 4f states. The local partial 4 f DOS as obtained in LDA is shown as grey shaded area, the
LDA+U result in black. Right: Eu bandstructure obtained in the LDA+U method: majority
spin states (full lines) and minority spin states (broken lines).

shift is, depends of course on the chosen U. Before we turn to the question how to obtain a
reasonable estimate for U, we have to refine the model to see, how we can apply the LDA+U
method on a certain set of states (e.g. 4f) at agiven atom.

To separate the localized orbitals from the itinerant states, for which the LDA provides already
agood description, one chooses a site-centered, {I, m} dependent orbital basis, |v, [, m), where
v is the site-index of the selected atom and [ and m are the angular and azimuthal quantum
numbers, respectively. If the density is given by Kohn-Sham orbitals like

SRR IR ST (56

where the weights, wgi) , determine the occupation of the states, we can define a density matrix
for spin a inm, m’-space:

novs = wv, L ml|ge) (¢ [v, 1, m). (57)

E.g. if wewant to apply the LDA+U method on 4 f states, we need for each spina7 x 7 density
matrix, where the diagonal elements give the occupancy of the! = 3,m = —3,-2,...,3
orbitals of the selected atom. Using this density matrix, the el ectron-electron interaction energy
can be formulated as [25]

= Z Z nov s [(m, plVeelm', q) = (m, p|Veelq,m')605] n2 (58)

v mm'pq



Electronic Statesin Solids A1.19

and used instead of the simpler version, equation (52). Here, the electron-electron interaction
can be expressed in terms of an angular part, contained in a,, and theradial part that is given by
the effective Slater integrals[22], F.:

<m7p|‘/ee‘m/7q> = Zak(m7p7 m/7Q>Fk ; 0 S k S 21 (59)
k

In terms of the screened Coulomb- and exchange parameters, U and J, the Slater integrals can
be approximated, e.qg. for [ = 2, as
F2 + F4 F4 5

and the a;, are sums of integrals of the angular part of the wavefunction with spherical harmon-
ics. Then, we can define an orbital selective potential,

1 1

Vs = D [{m. plVeelm' @) — (m, plVielg, m')Sas] nfy - [U(n" = 5) = T = 2) | S
papB
(61)
wheren® =" nf andn” =) n®. Thisspin-, site- and [, m-dependent potential enters
now the Kohn-Sham equation via
2 o,V mm _ o o
-9 4 Vipa(M] 6 + 3 Y v s = ot (62)

v mm’

Thus, we have introduced a Hartree-Fock like potential term that acts on a certain subset of the
orbitals, leaving the others (in afirst approximation) unchanged. Equation (62) hasto be solved
self-consistently, until both the density and the density matrix are converged. If the Kohn-Sham
eguations are solved by expanding the wavefunction into some basis set, for different types of
basis sets aso a different orbital basis, |v, [, m), will be convenient. It is clear, that also the
result of the LDA+U calculation will depend to some extent on the choice of the orbital basis,
but in practice for the same parameters U and J also qualitatively the same answers are reached.
As can be seen from figure 5, when applied to 4 f metals like Eu or Gd, the LDA+U method
can be used to shift the position of the 4f as a function of U. A comparison to the position
where they are spectroscopically measured can be used to determine a value for U, although
other methods will be described below. One of the problems of LSDA, the prediction of an
antiferromagnetic groundstate for hcp Gd, is resolved when the LDA+U method is applied in
this way [26]. Another improvement due to the LDA+U approach can be seen in the case of
Eu, where LDA would predict a much too small lattice constant, while LDA+U removes this
overbinding caused by the 4 f states [27].

More complicated physical phenomena, like orbital ordering, can be introduced in a DFT cal-
culation by the LDA+U method. In perovskite materials a transition metal atom sits in an
octahedral cage of oxygen atoms and its electron system is rather isolated from the rest of the
electronic structure. If a single d electron is left on this atom, e.g. on the V in SrVO;, this
electron is in an amost atomic-like state forming a very narrow band and feels just a small
octahedral crystal field from the neighboring anions. Thus, the d states are splitin e, and ¢,
states, populated by a single electron. Due to the remaining degeneracy, we would expect a
Jahn-Teller (JT) distortion to form but conventional exchange-correlation potentials fail to cap-
ture this phenomenon. One of the first examples, where this was studied, was KCuF; where a
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Fig. 6: Left: Total energy as a function of the Jahn-Teller distortion in (paramagnetic) KCuF;
as calculated with the GGA without (dashed red line) and with a Hubbard-U (full black line).
The experimental (cubic) lattice constant and an a-type orbital ordering was assumed. Within
the LDA+U method a quadrupolar distortion is stabilized. Right: Orbital ordering in a d-type
antiferromagnetic structure of KCuF3. The distorted octahedra, formed by the fluorine atoms,
are indicated by red lines, the unit cell in gray. Blue spheres are K atoms, the magnetization
density (mostly on the Cu atoms) is shown in red.

single d-hole sitsin afluorine octahedron, inducing a sizable distortion [25]. While LDA gives
no JT distortion at all, GGA leadsto avery shallow energy minimum at finite distortions as can
be seen from figure 6. Here the distortion is measured by the fraction (I —s) /(14 s) where and
s are the long and short axis of the deformed octahedron. In contrast to these results, with the
LDA+U method (U was chosen to be 7.5 eV) aparamagnetic orbitally ordered state with asize-
able JT distortion can be stabilized (left of figure 6). Several different orbital orderings can be
obtained, one of them shown in theright of figure 6, and their energies can be compared. We see
that in the LDA+U method it is also possible to stabilize solutions which are not the electronic
ground state - in contrast to non-spin polarized DFT. Since it is a ground-state method, LDA+U
predicts an antiferromagnetically and orbitally ordered ground-state in good agreement with
experiment [28]. The structural parameters are very similar to the results obtained from dynam-
ica mean-field theory (DMFT) calculations [29], although it needs this more elaborate theory
to capture the electronic structure of this material in its (high temperature) paramagnetic state.
Despite the enormous computational expenses of DMFT calculations for even a few bands or
sites (cluster-DMFT), detailed insight into the physics of these strongly correlated materialsis
nowadays possible [30]. More details on the “electronic structure of transition metal oxides”
and on “highly correlated electron systems’ will be given in subsequent lectures.

Although the LDA+U method is rather simple and quite successful, it faces the problem that it
introduces an external parameter and thus destroysthe “ab initio” character of the conventional
LDA approach. Therefore, concepts to calculate U within constrained DFT [31] and with the
GW method [32] (next subsection) have been developed. Fortunately, in many cases the re-
sults do not depend too sensitively on the exact values of U and J. But there are also systems,
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like Y MNnOs, where depending on the value of U different magnetic ground-states can be stabi-
lized [33]. A collection of applications of the LDA+U method can be found in reference [24].

3.4 Quasparticlesand the GIW approximation

Up to now, we relied on the concept of single-particle states which we inherited from the in-
dependent electron approximation. Of course in a many-body system it is not at all clear in
how far this concept still is meaningful. As we have seen at the beginning of this section, in
a system of independent particles the energy to remove a single electron can be determined as
the eigenvalue of a single particle equation like Eq.(33). So we can ask whether it is possibleto
create an equation similar in structure that yields as an eigenval ue the energy to remove or add
asingle electron to amany-body system. These energies would be what istypically obtained in
experiments like photoemission or inverse photoemission.

It would lead to far to introduce all necessary theoretical concepts to develop an appropriate
theory to study this problem. To outline the basic difficulties we will follow here an early
paper of many-body perturbation theory [34]. It starts from a single-particle Hamiltonian, e.g.
Eq.(36), and assumes that the difference between this Hamiltonian and the true, many-body
Hamiltonian can be treated as a perturbation. The energy needed to add a single particle to the
N-electron state will differ from the (N + 1)th eigenvalue of a single particle Hamiltonian, hq,
by an amount which is called the self-energy of this particle. It can be shown that it is possible
to add aterm to h so that this self-energy vanishes. The resulting Hamiltonian has the form

hod(r) + / (e, ) bu(r)dr’ = ii(x) (63

with the non-local, energy dependent self-energy operator. The eigenvalues are now excitation
energies, i.e. the energy differencesbetweena N anda N + 1 particlesystem (ora N and N — 1
particle system).

Formally, we can notice a similarity between Eq.(63) and the Hartree-Fock Eq.(39) by writing
an energy independent self-energy

S (r, 1) Z 050 (t)) )00 ; =1iG(r,r’', —n)v(r,r). (64)

| — |

In the last step we wrote the sum over the single-particle states as a Green function with n being
an infinitesimally small (positive) time, so that G reduces to the density matrix.
In many body perturbation theory it turns out that —in a certain approximation — the self energy
operator, when Fourier transformed from the energy to the time domain, can be written in a
rather similar form:

Y(r,r';7) =iG(r, v, )W (r,x', 7 + 1) (65)

where G is now the full Green function and WV is a screened Coulomb interaction. Generally,
iG(r,r’, 7) describes the probability to find a particle inserted into a many-body system at a
position r after sometime 7 at aposition r’. The screened Coulomb interaction 1V isrelated to
the bare Coulomb interaction v(r, r') viathe dielectric function e,

W(r,r' e) = /el(r,r",a)v(r,r")dr" =o(r,r') + /nind(r,r",g)v(r’,r”)dr" (66)
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Again, we see the effect that the Coulomb potential of the electron repels neighboring charges
to giverise to a positive induced charge, n;,q4, that modifies (screens) the bare Coulomb inter-
action. This behavior reminds to the exchange hole, Eq.(42), of the Hartree-Fock theory or the
exchange-correlation hole, Eq.(48), of DFT that gives rise to the exchange-correlation energy,
Eq.(49).

It should be noticed that Eq.(65) is a kind of Hartree-Fock (HF) approximation for quasiparti-
cles, while Eq.(64) is the HF approximation for electrons. So, despite the formal similarity to
the HF equations we have to keep in mind a couple of important differences. Eq.(63) contains
an energy-dependent non-Hermitian self-energy operator. The eigenvalues, ¢;, are complex
numbers and the imaginary part leads to a damping term in the time-dependent Schrodinger
equation, meaning that the quasiparticles, described by Eq.(63), have a finite lifetime that is
proportional to the inverse of the value of the imaginary part. An electron or hole that is added
to a many body system keeps its particle-character for some time, until it "dissipates’ into the
many-body ensemble.

Hedin [35] provided a set of equations that link all these quantities like the self-energy (con-
taining so-called vertex corrections), the Green function, screened Coulomb interaction and
dielectric function. These equations can —in principle — be solved self-consistently. In practice,
however, the solution of these equations is far too complicated and commonly an approxima-
tion to this equations is solved, which takes Eq.(65) for the self-energy and substitutes the G
in this equation by a Green function constructed by Kohn-Sham wavefunctions. Also the di-
electric function, ¢, is calculated from these wavefunctions in the random phase approximation.
This scheme is commonly termed GW approximation [7] and leads to quite reliable excitations
energies, e.g. for bandgaps of semiconductors (cf. figure 4).

It should be mentioned that this is a method to calculate excitations in a many-body system
where the particle number is changed by one. There are aso excitations which leave the particle
number unchanged and are accessible by generalizations of density functional theory, liketime-
dependent DFT (TDDFT), which provide away to calcul ate these types of spectraand are active
research fields today [36].

4 Relativistic effects

Having established various methodsto deal with the electronic structure of solids, inthis section
we will focus on the spin of the electron. Up to now, we encountered the spin just as a label
attached to electron wavefunctions that has to be taken into account in context of the Pauli
principle. This additional quantum number can lead to important consequences, e.g. favoring
magnetic ground states in transition metals, but this is the topic of a separate contribution on
the “electronic basis of magnetism”. We have to note here, that the spin introduced in this way
is effectively just a number. To make full use of the electrons spin, e.g. to store or transmit
information, it is crucial to focus on spin as a vectorial quantity that is carried along with the
electron, having a definite orientation in space that can be manipulated and used in a spintronic
device.

Therefore, in this section we will try to give spin a physical interpretation and study its conse-
guences. Semi-classically, the electrons “ spinning” around its own axis can be thought to be the
source of the spin magnetic moment. This should not be confused with the orbital moment, aris-
ing from the precessional (orbital) motion of the electron. If we will denote the wavefunction
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and the spin-label (referred to as spin-up or spin-down) as

Br) = o(r)x  with x:(é) or ((1’) (67)

we can express the spin, S as the expectation value of the spin-operator, o,

s—wlol) o= o )e=(0 0 )e=(y 1) o

Of course the Schrodinger equation will provide the wavefunctions«, but tells us nothing about
the orientation of S. In a collinear case, i.e. when all the spins are oriented aong the same
direction, for convenience the spins are assumed to be aligned in z-direction.

To givethis spin-vector an absol ute orientation in space, wefirst have to introduce anew termin
the Hamiltonian that connects the spin-orientation with the axes of the crystal. This spin-orbit
coupling term, which will be discussed on a general basisin the first subsection, leadsthen to a
preferential spin orientation in the crystal, which is essential for every magnetism-based device,
be it a ssmple compass or amodern hard-disk drive.

Spin-orbit couplingisacrucia effect in magnetic systems. In most solid state systems, however,
due to chemical bonding the number of spin-up and spin-down wavefunctions are equal, so that
the total spin is zero. Interestingly, even in these spin-compensated systems, that are in total
non-magnetic, spin-dependent processes can be observed, e.g. the Rashba effect. These effects
are fundamental for combining semiconductor systemswith “classical” magnetic structures and
will be introduced in the second subsection. Finally, we will shortly discuss spin-orbit coupling
in magnetic systems, that leads to the magnetic anisotropy.

4.1 Spin-orbit coupling

As a consequence of the Lorentz transformation, an electron that is traveling with avelocity v
on aclassical trgjectory around the nucleus, experiences an electric field E (from the potential
gradient that arises due to the screened nucleus) as a magnetic field, B = %(v x E). This
field will couple to the spin, o, of the electron as —o - B.! To include this effect on a quantum-
mechanical basis, itisnecessary to start from rel ativistic one-el ectron theory, the Dirac equation.
In the Schrodinger equation — even for a magnetic system — there is no term that explicitly
includes the spin-operator. But if we include a certain term from the Pauli equation (a two-
component approximation to the Dirac equation [38], see Appendix) we get

1
SV V() — o (o x B) | 4 = et (69)

It isthis relativistic correction (factor %) that leads to the coupling between spin-space (o) and
lattice (E(r)).

If we assume that the electric field is derived from a spherically symmetric potential, V' (r), (as
occursin the vicinity of an atomic nucleus) we can transform this term

~ 1dV(r) ~ 1aV(r)
T r odr a-(rxp)—; dr (

LAlthough thisinteraction has the form of a Zeeman term (the interaction of the spin with an external magnetic
field), its interpretation is not so straightforward: as compared to a classical interpretation, due to kinematical
effects a factor of two arisesin the expression. The origin of this effect is called Thomas-precession [37].

—o-(pxE(r))=0-(VV(r)xp) o-L)=¢o-L, (70)
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Fig. 7: Bandstructure of Ge around the Fermi level without spin-orbit coupling (left) and with
spin-orbit coupling included (right). Notice, that the three-fold degeneracy of the highest occu-
pied state at the I' point is split by spin-orbit coupling, as well as the doubly degenerate band
along thelinesT L and T X. The calculation is performed at the experimental lattice constant
using the local density approximation to DFT. Note, that the experimentally observed bandgap
of 0.75 eV closesin a DFT calculation. In the present cal culation the gap is opened by applying
the LDA+ U method (cf. subsection 3.3).

where L is the orbital momentum operator. This term is called the spin-orbit coupling (SOC)
term with the spin-orbit coupling constant £. Keep in mind that — although the term o - L looks
like a coupling between a spin- and an orbital moment — the SOC term describes the coupling
between the spin and the magnetic field created by the electrons orbital motion. Therefore,
o - L enters with a positive sign in EQ.(69), indicating that spin- and orbital moment like to
orient antiparallel — giving rise to Hund'sthird rule.

Sincetheradial derivative of the potential in acrystal will be largest in the vicinity of anucleus,
we can expect that the major contribution to the spin-orbit interaction will come from this
region. For an atom v then r isthe radial part of the vector r, = r — 7,. Furthermore, since
for small r,, the potential will be Coulomb-like (V (r) = —Z), its derivative 37" is proportional
to the nuclear number of the atom, Z,,. We thus expect that £ will be large for ﬁeavy atoms, but
small for lighter ones.

Electrons, that are close to the nucleus (i.e. those of the inner shells) will feel the consequences
of this spin-orbit coupling most strongly. Asit is well known from free atoms, this term will
favor the formation of an orbital momentum, L, which is then coupled to the electrons spin.
E.g. the p-electrons can form states with a total orbital momentum L = 1, coupling then to
the electrons spin. We can classify p-states according to their projections on a selected axis (z)
by their magnetic quantum numbers m, = —1,0,1. Combined with the electrons spin, this
will result in a total angular momentum J = 3/2 with projections m; = 3/2 or 1/2. Asa
consequence of spin-orbit coupling, this results in a level splitting between the p;, and p/»
states.

In contrast, the valence electrons in a solid will arrange to optimize the chemical bonding, e.g.
in asimple cubic lattice p,, p, and p. states will form. The level splitting is then determined
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by the crystal field. Partialy, spin-orbit coupling will interfere and lead to additiona level
splittings as can be observed e.g. in semiconductors at the center of the Brillouin-zone: In Si
(cf. figure 4) we see athree-fold degenerate state directly below the Fermi-level that splitsinto
a doubly degenerate and a singly degenerate one. The former one is closest to the Fermi level
in turn consists of two bands with different dispersions, the highly dispersive state is called the
light-hole band, the other oneistermed heavy hole band. The singly degenerate state at I" forms
the spin-orbit split-off band. In anon-relativistic cal culation these bands are degenerate in some
high symmetry directions, but when spin-orbit coupling isincluded a splitting can be observed.
Asexpected, thissplittingissmall in Si, but larger in the isoel ectronic but heavier Ge (figure 7).

4.2 The Rashba- and the Dressalhaus effect

In asystem without internal or external magnetic field time-reversal symmetry holds, i.e. chang-
ing the direction of the arrow of time will not alter the properties of the system. The transfor-
mation t — —t exchanges a particle moving with momentum k with a particle moving in —k.
Time reversal will also invert the precessional motion of the electron and, therefore, its spin.
As a consequence, the energy of aright-moving spin-up particle will equal the energy of aleft
moving spin-down particle,

ek, 1) =e(=k,|). (71)

In a crystal with inversion symmetry, additionally (k) = ¢(—k) holds, both for spin-up and
spin-down electrons. This means, that the bandstructure is symmetric around the center of
the Brillouin-zone, k = 0, and al bands are doubly degenerate. E.g. in the bandstructures in
figure 4 or 7 show this degeneracy.

In contrast, crystals without inversion symmetry the degeneracy of the bands can be lifted asa
consequence of spin-orbit coupling and only Eq. (71) holds. This can be understood if we real-
ize that a lack of inversion symmetry, V (r) # V(—r), will result in a non-vanishing potential
gradient or electric field, E(r). Aswe have seen in the last section an electron moving in an
electric field will experience thisfield Lorentz-transformed as B-field and

ek, 1) #ek,]). (72)

Thiswill, depending on symmetry, result in different consequences for the bandstructures.

Performing a Taylor expansion of the potential V'(r), V(r) = Vp 4+ eE(r) - r + - - -, in lowest
order the inversion asymmetry of the potential 1/ (r) is characterized by an electric field E(r).
When electrons with an effective mass m* propagate with a velocity v = de/dp = ni*k in
an external electric field E defined in a global frame of reference, then the relativistic Lorentz
transformation gives rise to magnetic field B = (v x E) = —L-(k x E) inlocal frame of the
moving electron. We have seen this term appearing in the spin-orbit coupling Hamiltonian in
Eq.(69) inthelast chapter. Again, theinteraction of the spinwith thisB field leads to a coupling

term. Thisterm is called Rashba or Bychkov-Rashba Hamiltonian [39, 40]

HR:O[RO"(pXE) or HR:OZRO"(kXE) or HR:OZR(|E|)O'(kXé) (73)

describing the Rashba spin-orbit coupling as additional contribution to the kinetic energy. o =
(04,0y4,0,) are the Pauli matrices, Eq.(68). The latter two terms are strictly correct only for
plane wave eigenstates as, e.g. for a two-dimensional electron gas (2DEG). An important re-
alization of a 2DEGs are electrons in doped semiconductor heterostuctures, that support an
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electron in an atom

Fig. 8: Schematic illustration of an electron moving in the potential gradient near a nucleus
(left) and a surface (right). In both casesthe electric field E resulting fromthe potential gradient
is Lorentz-transformed into a B field by the motion of the electron. In the case of the atomic
spin-orbit coupling (left) thisis an orbital motion, in the case of the Rashba-effect (right) itisa
linear motion. In both cases, the electrons spin, o couplesto the resulting B field.

electron gas at the interface between two materials, e.g. (InGa)As and InP [41]. Another pos-
sibility to study the Rashba-effect in 2DEGs is shown in figure 8: on surfaces which support a
surface state, e.g. in Au(111) [42] the electrons of the surface state move in a potential gradi-
ent that is provided by the surface itself (but can also be modified dightly by external electric
fields [43]). More exampleswill follow in other lectures.

The general features of the Rashba-model are studied for the 2DEG in a potential with structural
inversion asymmetry (SIA) and the corresponding bandstructure are displayed schematically in
figure 9. For electrons propagating in the 2DEG extended in the (z, y) plane subject to an
electric field normal to the 2DEG, e, = (0, 0, 1), the Hamiltonian takes the form

2 2

p b
H = Hg + Hg = 2—772* + ag (o X p”)lz = 277!* + ag (0.py — 0yDs) (74)

which can be solved analytically. For aBloch vector inthe plane of the2DEG, k, = (k,, k,,0) =
K, (cos p, sin ¢, 0), the eigenstates written asa product of planewavein space and two-component

spinor are
Y, (1)) = o R ( | gie)2 ) (75)
with eigenenergies
2

k k2 1
ex(ky) = 277!* +agr (o xk)) = 2—77”2* + aglk| = %(k‘“ + kso)? — Aso,  (76)

where + denotes the spin-up and -down states with respect to a spin orientation axis n(k,),
local in k; space. With the exception of the high-symmetry state £k, = 0, we find that the
origina two-fold degenerate energy paraboloid of the 2DEG in a constant potential is indeed
spin-split. This splitting ¢, (k) — e_(k;) = 2agk, islinear in k. Due to the presence of
the SIA potential and the spin-orbit interaction, the origin of the degenerate parabolais shifted
by kso = m*ag, but in opposite directions for up- and down-spins with in overall spin-orbit
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' Fig. 9: Cut through the parabolic energy dis-
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persions of a two-dimensional electron gas in
a structureinversion asymmetric (S A) environ-
ment. Indicated are the vector fields of the spin-
guantization axes (or the patterns of the spin)
at the Fermi surface. Asthe opposite spins have
different energies, the Fermi surface becomes
two concentric circles with opposite spins. The
effective B-field, B¢ isalways perpendicular to
the propagation direction defined by k;.

kx

lowering of Aso = m*ag /2. The orientation axisis given by the expectation value

sin ¢ cos
ng (k)= <wik“ \O'Wﬂq, =x| —cosp 1L k, =k | sing |. (77)
0 0

We find that the orientation axis is independent of the magnitude £, and depends only on the
direction of the k; vector. In fact, it isin the plane of the 2DEG and the orientation axis is
perpendicular to the propagation direction of the electron. Considering k, — —k;, ¢ changes
to ¢ + m, wefind that the spin orientation axis reverses asindicated in figure 9. Thusfor k; and
—k, the spin-up and -down states refer to opposite orientations. Defining a global quantization
axis along the line (—k,, k), eg. according to n (+k,), then a spin-up state appears as spin-
down state if k, changes sign. Together with the eigenvalue spectrum given in equation (76)
the Kramer degeneracy ¢,(k,) = ¢,(—k,) holds. In al, the magnetic moment is zero when
averaged over all statesk,. Thisis consistent with the absence of an B field.

The Rashba spin-orbit splitting may be observed either by electron photoemission or transport
experiments. Transport experiments work typically on a shell of constant energy . Here we
expect at a given energy two different wave vectors for up- and down-electrons, which will be
exploited in the Datta-Das proposal of a spin-transistor [44].

That the Rashba-type spin-orbit coupling may have important consequencesfor the one-electron
energy levels in bulk semiconductors was first emphasized by Dresselhaus et al. [45] already
in 1955. Unlike the diamond structure of Si and Ge, the zinc blende structure, in which for
examplethelll-V semiconductor crystallize, exhibit abulk inversion asymmetry (BIA), i.e. this
crystal structure lacks a center of inversion, so that we can have a spin splitting of the electron
and hole states at nonzero wave vectors k asfor the Rashba effect evenif B = 0. Today, thisis
called the Dresselhaus effect. The corresponding Dressel haus Hamiltonian

Hp = ap [0.p. (P — P2) + oypy (0 —13) + 0.p: (02 — p))] (78)

describes the BIA spin splitting due to the Dresselhaus spin-orbit coupling, which produces
spin vector fields quite different from those produced by the SIA splitting. One difference
is obviously that the Dresselhaus term produced a spin splitting which is proportional to &3,
ep o k3, while the spin splitting of the Rashba-term islinear in k, eg o k.

In a magnetic system time-reversal symmetry is broken and there is a shift between the spin-
up and spin-down states, e.g. in the Stoner-model for a magnetization M and the intraatomic
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exchangeintegral [ wefinde(k, 1) = e(k, | )—I M. Inaddition to this splitting, the Rashba-type
spin-orbit splitting can add a term agrk to the energy difference between electrons of the same
k but different spin. However, in a magnetic material the exchange interaction tries to align
the electron spinsin a parallel (collinear) manner and there is a well-defined spin-quantization
axis (SQA) that fixes the orientation of the spinsin the crystal. Then, only electrons moving in
a direction perpendicular to the SQA can be influenced by a Rashba-type effect, for electrons
with k parallel to the SQA theterm o - (E x k) hasto vanish [46].

4.3 Magnetic anisotropy

As mentioned shortly at the end of the last subsection, in a magnetic system the spin-orbit in-
duced splittings in a bandstructure will be influenced by the direction of the spin-quantization
axis. This gives a small, but important contribution to the total energy of a magnetic system
since in a non-relativistic Hamiltonian there is no term which could give a dependence of the
total energy on the direction of the SQA. Generaly, a dependence of the total energy of the
magnetization-direction (with respect to the crystal axes) istermed a magnetic anisotropy. This
anisotropy fixes the magnetization direction w.r.t. the lattice and allows for a stable magnetiza-
tion direction in amaterial, which is the basis of amost all magnetic applications.

There are several interactions that can lead to a magnetic anisotropy, e.g. the dipolar interac-
tion [49] which is of substantial importance in bulk materials. In low-dimensional magnets
also other interactions that lead to magnetically anisotropic behavior can become dominant,
most importantly the spin-orbit coupling. The magnetocrystalline anisotropy energy (MAE)
results from the anisotropy of the spin-orbit interaction, i.e. it is the difference of total ener-
gies obtained from Hamiltonians including the spin-orbit coupling term with the magnetization
pointing in two different directions.

To see how this can happen, remember that out of certain d-levels, only orbital moments point-
ing in acertain direction can be formed. E.g. ad,, and ad,_,. orbital can only be combined
to form an orbital moment in z direction. An orbital moment pointing in z-direction has to be
formed from electrons that can move in the (y, z)-plane, and thisisimpossible within only the
d.y and d2_,» orbitals. If now two appropriate orbitals are degenerate and occupied by asingle
electron (and thus forming the Fermi level), it is rather straightforward to identify the resulting
direction of the orbital moment using group theory [47]. In a metal, where several bands are
crossing the Fermi level, g, it is basically the sum of all contributions from bands near ¢ that
determine the orbital moment. In second-order perturbation theory the expectation value of the
orbital moment operator L can be written as:

i\ L) (V| Hso |
ZWI |v3) (U5 Hsolhi)

61‘—6]‘

(L) = fe) [1 = f(e)], (79)

0,

where H,, isthe spin-orbit coupling Hamiltonian and f is the Fermi function ensuring that the
wavefunction ¢; is occupied and +; is unoccupied. Van der Laan [47] has shown, that in the
absence of spin-flip terms (i.e. when the majority and minority band are well separated by the
exchange interaction), the spin-orbit coupling changes the total energy of a system in second-
order perturbation theory as:

wz’Hsowj wj Hsowi
Z< | Heol1h)) (15| Hsolhi)

Gi—Gj

0E =

Fle) [1— f(e))] ——58 (L) — (L] (80)

,[:7.7'
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where ¢ is the radial part of the spin-orbit Hamiltonian (Eq. (70)), S is the direction of the
spin moment, and L' and L' are the orbital moment vectors of the spin-down and spin-up
bands, respectively. If the spin-up band is completely filled, we see that energy change, 0 F,
is proportional to the size of the orbital moment and the magnetocrystalline anisotropy energy
(MAE), i.e. thedifference of ¢ F for two different magnetization directions, will be proportional
to the difference in the orbital moments. This relation between orbital moment anisotropy and
MAE was first derived by Bruno [48].

Practically, one starts from a solution ¥, of the Schrodinger equations (possibly including
scalar-relativistic corrections, cf. Appendix), and then solves the Hamiltonian including the
spin-orbit coupling term with the spin-quantization axis turned into the required direction by
means of a spin-rotation matrix U

! L. L,—iL
:€0+€<\Ilg UT( Zy)U

") ey
L,+ilL, —L. 0}

If £ or the orbital moment is small, the last part of Eq. (81) isonly asmall correction to the en-
ergy ¢, obtained from the Schrodinger equation and the magnetization direction of the solution
will point into the direction of the spin-quantization axis described by U'.

From the above equations it is clear that both, strong spin-orbit coupling and a sizeable or-
bital moment, L, are necessary for a large contribution to the magnetic anisotropy. But it is
also necessary that the spin-orbit interaction gives different energy contributions for different
magneti zations of the sample. In principle there are two possibilities to imagine how this could
happen: (i) the orbital moment isfixed to thelattice and its projection on the axis of the spin mo-
ment varies with the magnetization direction or (ii) the spin and orbital moments are collinear
and depending on the magnetization direction the size of the orbital moment varies. Normally,
we observe collinear spin- and orbital moments. The rotation of the orbital moment by an exter-
nal magnetic field can then lead to structural changes of the crystal. This phenomenonis called
magnetostriction and is discussed e.g. in Ref. [49].

The MAE isatypically asmall energy, for elemental bulk magnetsit isin the order of micro-
electronvolts (ueV). Thisis mainly a consequence of the high symmetry in these bulk systems.
Low-dimensional systems (thin films, chains and wires) can show much higher MAE’s, up to a
few milli-electronvolts. Since other sources of magnetic anisotropy can be even smaller inthese
systems, spin-orbit coupling can get very important in magnetic nanostructures.

Sometimes, in analogy to the Heisenberg Hamiltonian describing the exchange interaction in
acrystal, the spin-orbit coupling is cast into a form ). &;L;S; where i is a particular atomic
site. Then, evidently, another term coupling the spin of a site 7 to the orbital motion at site j
is conceivable: C;;L;S;. This spin-other orbit interaction is, like the dipole-dipole interaction,
derived from the Breit equation. In the Hartree approximation it was included in ab-initio
calculations but was found to be much weaker than the formerly described spin- (same) orbit
interaction [50].
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Appendix

The Dirac equation

A relativistic theory for an electron (of charge —e) in an external scalar potential 1 and avector
potential A can be formulated via the Dirac equation (for clarity, no atomic units are used in
this section)

0
HY = +ihoo U = e¥; H=—eV(r)+ Bmc* +a-(cp+eA(r)). (82)
Here, a isavector of 4 x 4 matrices, that can be written in terms of the Pauli spin-matrices, o,
while g isamatrix of same rank, expressible in terms of the 2 x 2 unit matrix Is:

W (0 ° g Iy 0N (0 1\ (0 =i\ (1 0
“\e o))" Vo )" " \1o0)2 i o) \o -1 )

The Hamiltonian acts on a four-component wavefunction W that can be written as a 2-vector of
the so-called large and small components, v and . For this components the Hamiltonian of the
Dirac equation can be written as

e —2m+ V()Y = o (cp+eA)x (83
(e+2mc® +eV(r))x = o-(cp+eAr))y (84)

where o is the vector of Pauli matrices. In the non-relativistic limit, these equations reduce to
the Schrodinger equation for the large component. Discussions of the Dirac theory are available
in most textbooks on quantum mechanics, we follow here the book of Bethe and Salpeter [38].
Substituting Eq.(84) in (83) and retaining only terms up to order (v/c)? , it is possible to for-
mul ate an equation (sometimes termed Pauli equation) for the large component only:

+V()+—h2v2+ L ocreve) +i A aa A(r) +
erevir 2m 2mc? erevir ch r 2mc? r
. eh eh eh

where the gradient of 1V and the curl of A have been written explicitly as electric (E) and mag-
netic (H) fields. In the non-relativistic limit the first three terms give the ordinary Schrodinger
eguation. The fourth term gives the relativistic correction due to the change of the mass with
velocity. In absence of a vector potential (and magnetic field) only two more terms involving
the electric field remain. The expression including the triple product o - (E(r) x p) isthe spin-
orbit coupling term, discussed in section 4.1. Ignoring thisterm and retaining the E(r) - p term
(which has no classical analogon) gives a spin-free equation, the so-called scalar relativistic
version of the Schrodinger equation.
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1 Introduction

Although magnetic materials are known since ancient times and much about the relation be-
tween electricity and magnetism has been discovered by Ampere, Faraday, Oersted, Maxwell
and others in the nineteenth century, the key for understanding of magnetism was only provided
by the development of quantum mechanics in the twentieth century. In my lecture I will first
show that classical theory for a system of moving electron in an external magnetic field leads
to a vanishing magnetization so that the description of magnetism necessarily requires quantum
theory. Quantum theory for a single electron is then used to explain the origin of diamagnetism,
paramagnetism and spin magnetism. Then I will show how the many-electron system can be
treated by spin density functional theory, that this theory provides a powerful tool to study fer-
romagnetism in elements and alloys and that it can be used to obtain parameters for simpler
model Hamiltonians. Finally, I will discuss that for practical applications of magnetism also
relativistic effects are important.

2 Classical and Quantum Theory

2.1 Bohr-van Leeuwen Theorem

The magnetization m in classical statistical physics can be obtained from the derivative of the

free energy F' = —kgT In Z with respect to the magnetic field B as

_10F _kpTOlmZ Q)
VOB vV 0B’

where V' is the volume, T the temperature and kg the Boltzmann constant. For a classical

system of IV electrons the partition function 7 is given by an integral over all momenta P, and
coordinates r; as

m:

H
Z:/"'/exp<—]€B—T>d}_?l...d]_?Ndﬁl...dﬁN. (2)

In an electric field described by a potential v and a magnetic field B = V x A described by a
vector potential A the Hamilton function H can be written as

N 1 2 1 e? 1
H=3 g o ede)] +eef+ 05 Syt ©

where ¢, is the electric constant and m,. and e electron mass and charge. The substitution

/

p, =D, — eA(r;) for all momentum integration variables in (2) leads to the result that the
partition function Z cannot depend on A and consequently (1) gives m = 0. This result that
in an external magnetic field in thermal equilibrium a classical system of moving electrons has
a vanishing magnetization is known as the Bohr-van Leeuwen theorem because it has been
derived by Niels Bohr in 1911 and independently by Johanna Hendrika van Leeuwen in 1919
in their doctoral dissertations.

In quantum theory the situation is different. The electron system is described by a Schrodinger

equation HU(r, t) = ihd, ¥ (r, t), where the Hamilton operator

N

1y 1 ) 1 e 3 1

"= {Qm IRV, — eA(r)] + U(Zi)} * Aey 2 lr, —r
i ¢ i#j
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is obtained from the Hamilton function (3) by replacing the classical momentum variables p.
by momentum operators p, = —ihV;. Since the momentum operator D, does not commute with
the coordinate r; and the vector potentlal A(r;), the Bohr-van Leeuwen theorem does not apply
with the consequence that magnetism is a pure quantum phenomenon.

2.2 Paramagnetism and Diamagnetism

To simplify the discussion only a single electron will be considered now. Here the stationary
Schrodinger equation can be written as

I v2+ieh(v A(r) + A(r) - V) + ¢ A*(r) +o(r) p U = EV (4)
2m, 2me AL AL~ 2m. Lok B '

The term linear in A(r) gives rise to paramagnetism and the term quadratic in A(r) to diamag-

netism. With (31) and (32) derived in the appendix it can be shown that for a constant magnetic

field B equation (4) simplifies into

2me 2me Me

h? e e
{— V2 - L.§+8—r232(1—cosQﬁ)+v(f)}\I/:E\If, (5)

where » = |r| and B = |B| denote absolute values, 9 is the angle between r and B and

L = —ihr x V is the angular momentum operator. The relative size of the paramagnetic and

diamagnetic terms in (5) can be estimated using » ~ ao, where a, is the Bohr radius, and
= |L| =~ h. The ratio of diamagnetic to paramagnetic contribution is then given by

(e?/8mc)aiB* eagB
(e/2m¢)hB 4h

Withe = 1.602x 1071 As, ay = 0.529 x 10~ mand A = 1.054 x 10~* Js one obtains a factor
ea?/4h which is the order of 1076 T-'. J=m?kg s and T = kg s~2 A~! are the derived SI
units joule and tesla). Thus for fields achievable in laboratories (about 10 T) the diamagnetism
of atoms is much smaller than their paramagnetism. For other systems, for instance for metallic
electrons, diamagnetism and paramagnetism can be of comparable magnitude as the result x;, =
—% x p for the diamagnetic Landau and paramagnetic Pauli susceptibilities of a free electron gas
demonstrates. It is also instructive to compare the paramagnetic term with the Coulomb energy
e? /4megag. Their ratio can be estimated as

(e/2me)hB  2mhegag
e2/4dmegay  em,

B.

With ¢y = 8.854 x 1072 Fm~! and m, = 9.109 x 103! kg one obtains a factor 2nhegag/em.
which is of the order of 2 x 1076 T~1. (F = s* A? kg~! m~2 is the derived Sl unit farad.) Thus
for laboratory conditions magnetic effects arising from the external fields A or B in (4) and (5)
are rather small.

2.3 Electron Spin

In 1922 Stern and Gerlach found that in an inhomogeneous magnetic field a beam of silver
atoms splits into two subbeams. This famous result cannot be explained by the Schrodinger
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equation given above. The angular momentum operator L in (5) splits the beam into 2/ + 1 sub-
beams, for [ = 0 (s state) no splitting is expected and for [ = 1 (p state) three subbeams should
appear. Thus the observed splitting cannot be caused by the orbital motion of the electron. The
reason for the two subbeams is an internal degree of freedom, the electron spin discovered by
Uhlenbeck and Gouldsmith in 1925. In 1927 Pauli proposed to add a term gugS - B to (5)
and to use a two component wavefunction U=, where S is the spin operator, ug = eh/2m,
the Bohr magneton and ¢ = —2 the Landé-g-factor for the electron. One year later the rela-
tivistic Dirac equation was discovered and, because the Pauli term naturally follows from the
non-relativistic limit of the Dirac equation, for historical reason spin is often considered as a
relativistic phenomenon.

However, the Pauli term can also be derived without a relativistic formalism. It is only necessary
to linearize the quantum mechanical wave equation. Whereas in a relativistic formalism Lorentz
invariance requires a linear relation of space and time variables, which is achieved in the four
component Dirac equation, non-relativistically a linear relation only between the three space or
momentum variables is required. Obviously the linearization

Yo(p2 + P2+ p2) = (pw + Y2y + 3p2)° (6)

cannot be satisfied if the ~; are numbers, but it can be achieved with matrices, for instance with
2 x 2 matrices

(1) () e (T) (1) o
0 1 1 0 i 0 0 —1

if the choice vy = I5, 71 = 04, 72 = 0, and 3 = o, is made. In vector notation (with a vector
o built from the Pauli matrices o, 0, 0.), equation (6) can be written as

Lp* = (a- 2_7)2 ] (8)

which is valid as shown in the appendix. By use of (8) one obtains that

El, o-p >\ [0
<g-z_o 2me?2)<x)—<o) 9)

after elimination of X leads to

p2

(Zme

Thus the four component equation (9), which is linear in p,, p, and p, and which was derived by

Levy-Leblond [1] by requiring Galilean invariance instead of Lorentz invariance, is equivalent

to the two component Schrddinger equation (10), which is quadratic in p,, p, and p.. If now

electric and magnetic field are added to (9) by the usual prescription of gauge invariant minimal
coupling one obtains

o-(p—eA) 2mIs X)) \o)’
which after elimination of X leads to

{ : [Q'(p—eé)f—[E—v@]]Q}@:0.

2m, -

—BE)L,®=0. (10)




Electronic Basis of Magnetism A2.5

Substituting p = —iAY and using

[0 (ihY +eA)]? = LAV +eA)? +io - [(ihV + eA) x (ihV + eA)]
= L(ihV +eA)? —cho- [V x A+ Ax V]
= L (-W’V?+ieh[V-A+A-V]+ e’ A?) —cho - B

which are valid because of (28 - 30) derived in the appendix, leads to

62

{12 {— QZ V24 2N A+ AW) - V) +

2 _ A —
T 2meA (r) +v(r) E] + gusS E}Cb 0,

where pp = eh/2m, = 9.274 x 10724 JT~! is the Bohr magneton, S = ¢ /2 the spin operator
and g = —2 the non-relativistic approximation to the electron g-factor ¢ = —2.002319.

3 Spin Density Functional Theory

It is well known that certain materials, for instance the elements Fe, Co and Ni, show sponta-
neous magnetism even in a vanishing external magnetic field. For A = 0 the system is described
by the Hamilton operator

S B S s pp e 12
i oM. i ext\l; 47T€0 2 it |£i_£j|

where v, (r) is the external potential provided by the atomic nuclei. Within density functional
theory this many-electron system can be treated by effective single-particle equations. By the
Hohenberg-Kohn theorem there exists a one-to-one mapping between the external potential
and the ground-state density which means that the ground-state density uniquely determines
the external potential and the wavefunctions for this potentials and by the wavefunctions all
stationary quantum-mechanical observables. Thus for magnetic systems it should be sufficient
to calculate the ground-state density n(r) and then the magnetization m(r) as a functional of
n(r). Unfortunately, the functional dependence m(r) = m[n(r)|(r) is not known.

To circumvent this problem von Barth and Hedin [2] and Rajagopal and Callaway [3] proposed
to extend density functional theory into a spin density functional theory by using a Pauli spin
term added to (12) and two component wavefunctions. In principle, terms, which are linear and
quadratic in A can be added also and treated within spin-current density functional theory, but
for the present purpose only the spin term will be considered.

3.1 Basic Formalism

In spin density functional theory the basic variables are the density n(r) and the magnetization
m(r). Alternatively, it is possible to use the 2 x 2 spin density matrix n®?(r), where the spin
indices « and [ can have two values, either 4+ for spin up (majority spin) or — for spin down
(minority spin). The notation 7 instead of + and | instead of — is also often used in the literature.
The connection between n(r), m(r) and n®?(r) is given by

n(r) =Y nr)  mr)=pp Y c*n(r)
« af
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and by
n*(r) = I5%n(r) /2 + [02°ma (1) + o3 Pmy(r) + 02%m. ()] /2p8
where the spin indices are explicitly displayed. The spin density functional

E[n(r)] = T,[n"(r)] 47T€0 // i~ 7“’\ drdr (13)
+ Z/ ea:t dr—l_EJ?C[ ( )]

consists of a sum of the kinetic energy 7, of non-interacting electrons, the electron-electron in-
teraction in the Hartree approximation, the interaction energy with the external potential v and
the exchange-correlation energy. The external potential v5., contains the electrostatic Coulomb
potential of the nuclei and the potentials arising from possmle external electric and magnetic
fields. Because the Hohenberg-Kohn theorem is valid for arbitrary values of the coupling con-
stant e2, it is also valid for a non-interacting electron system characterized by ¢? = 0 so that the
spin density matrix n®’(r) of the interacting system uniquely determines a potential v®%(r) for

the non-interacting system. The energy functional for the non-interacting system is given by

Eanaln®(0)] =T + Y [ (0)d (14
af

Subtraction of (13) and (14) leads to an integral equation for v®%(r), which by functional deriva-
tion with respect to the ground-state spin density matrix n®%(r) gives the result

v () = 157 ¢ /\r—r’\dr + 0% (r) + v28(r) . (15)

47eg

Note that both E[n®%(r)] and E,>_y[n*?(r)] are minimal in the ground state so that their func-
tional derivatives vanish in the derivation of (15). The exchange-correlation potential v (r) can
be obtained by the functional derivative § E,.[n*?(r)]/én®’(r). For the non-interacting system
the spin density matrix and the kinetic energy can be calculated by single-particle equations

:;W?(t)%ﬁ(z) and T,[n Z / o (

where the sum over 7 includes all occupied orbitals. These orbitals can be determined from the
single-particle Kohn-Sham equation

V) dr,

e D+ Do el =l o) (16

which arises if the energy functional (14) is minimized with respect to the orbitals. Useful
approximations for the exchange-correlation energy functional can be given in terms of the
eigenvalues n*(r) and n~(r) of the matrix n?(r) which can be diagonalized as

DU (o () U (r) = 5% (r) (17)

a//@/
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where U*?(r) are spin-1/2 rotation matrices and n“(r) the eigenvalues. Note that these matri-
ces and eigenvalues generally depend on the position r. In many applications, for instance in
ferromagnetic and antiferromagnetic solids, a common magnetization axis exists for all atoms.
The z axis can then be chosen globally along the direction of the magnetic field and the spin-1/2
rotation matrices in (17) are independent of . This has the simplifying consequence that the
energy and all other physical observables are functionals of the density and of the magnitude of
the magnetization m(r) = |m(r)| = pg[n™(r) —n~(r)] rather than of the vector m(r). In terms
of the spin up and spin down orbitals ¢ (r) and »; (r), the spin densities n"(r) and n~(r) can
be represented as

n*(r) = lgi () (18)
and the Kohn-Sham equation can be written as
)| et ) = et)
2m 5= v v A=

with the effective potential

2 /
+ € n(f) + +
) = / T+ ) + o).

In an external magnetic field B, the external potential v, contains a field term —(+upB),

where the negative sign means that the majority electrons (with spin +) are energetically favored
compared to the minority electrons (with spin —). The exchange-correlation potential v (r) can
have different values for the two spin directions even without an external magnetic field. This
is, for instance, realized in the ferromagnetic metals Fe, Co and Ni.

Spin density functional theory as presented above is exact in principle, however the functionals
E,. and v, in which all complications of the many-electron system are hidden, are not known
and must be approximated. Useful approximation like the local-spin-density approximation
(LSDA) [2, 4, 5] and the generalized gradient approximation (GGA) [6, 7] have been developed
and have been shown to be rather accurate for many applications.

3.2 Stoner Model for Ferromagnetism

Normally the magnetization m(r) is a small compared to the density n(r). Thus the exchange-
correlation potential can be expanded in terms of m(r) and approximated as

Veelr) = v5c(r) F m(r)0[n(r)](r)

where higher order terms of m(r) are neglected and v¢,. is the non-magnetic exchange-correlation
potential. The average value of v is positive such that majority electrons (with spin +) feel a
more attractive potential and minority electrons (with spin —) a less attractive one. In the Stoner
model the difference of the potentials is simulated by a constant

1 1
vE(r) =00 (r) F ~IM with M = _/
2 /’LB Va

m(r)dr = /V (1) — 0~ (O))dr .

tom Atom

Here I is the exchange integral (Stoner parameter) and M the difference of the number of
majority and minority electrons in the atomic unit cell so that M;,. = ugM gives the local
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atomic moment. In the ferromagnetic elements Fe, Co and Ni all atoms are equivalent (with
the same value of 7 and M) so that v (r) differ by 70, which is constant in space. For a
constant shift of the potential the wavefunctions and eigenvalues, which in periodic crystals are
characterized by wavevector £ and band index v, can be calculated as

1
szk,ty (ﬁ) = 8021, (E) and E:Ety = 621/ F 5[]\4' .

This means the wavefunctions are identical to the non-magnetic ones and the eigenvalues are
simply shifted by a constant amount. Consequently, the densities of states n*(E) are also
shifted compared to the non-magnetic density of states n°(F) as

n*(E) = Z /B ) S(E — €f,)dk = nO(E%JM) . (19)

Here the integral is over the Brillouin zone (BZ). The shift i%]M for the spin up and down den-
sities of states describes reasonably well the situation which is found in spin density functional
calculations for the ferromagnetic elements as can be seen in Fig. 1.

¢ 3.50 6 T T T T T 2.50

6 T T T T
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Fig. 1. Density of states for Fe (left picture) and Co (right picture) from spin-density-functional
calculations [8]. The density of states for majority-spin electrons is plotted upwards and for
minority-spin electrons downwards. States for negative energies (lower than Er) are occu-
pied states for positive energies (higher than E) are unoccupied. The dotted curves represent
energy integrated density of states.
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Fig. 2: Graphical solution for the Stoner model. The intersection of F'(M) with the straight
line M determines the solution M,. The intersection at M = 0 is always a trivial solution.

From (19) one obtains by integration over all occupied states

M= / 0t (B) - - (B)] 4B — / EF {nO(E + %IM) (B - %]M)] dE  (20)

N = /EF +n (E)]dE = /EF an(E + %IM) +n°(E — %IM)} dE.  (21)

Since n°(E) is determined by the non-magnetic calculation and N by the condition of charge
neutrallty, (21) implicitly defines Er = Er(M) as function of M and (20) defines a function

F(M) = / e {nO(E + %[M) (B — %[M)] dE

for which the solution M = F(M) must be found self-consistently. The function F'(M) sat-
isfies F(M) = —F(—M), F(0) = 0, F(+o0) = £M, and F'(M) > 0, where the last
condition arises from n°(E) > 0. Here M, is the spin moment for full spin polarization, when
all majority states are occupied and all minority states are empty. This situation corresponds to
the atomic limit with maximal spin moment according to Hund’s first rule. Two possibilities
for F/(M) are shown in Fig. 2. For the function denoted by (A) only the trivial non-magnetic
solution M = 0 exists. For the function denoted by (B) three solutions exist, M = +Mg
with a finite spontaneous magnetization and A = 0. This non-magnetic solution is however
unstable. From Fig. 2 it is obvious that a solution with non-zero moment always exists, if the
slope F/(M)/M at M = 0 is larger than one. Thus F’(0) > 1 is a sufficient condition for
ferromagnetic solutions. From (20) one obtains by differentiation

I 1 1
F'(M) = 3 [nO(EF + QIM) +n’(Ep — §IM)} (22)
. 1 , 1. 1dEx

which for M = 0 leads to
F'(0) = In°(EF).
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This implies that the Stoner criterion
[TLO(EF) > 1

is a sufficient condition for ferromagnetic solutions, which are thus favored for large exchange
integrals I and large density of states n°( Er) at the Fermi energy Er.

The Stoner model can be extended to include effects of an external magnetic field B = (0,0, B).
This allows to determine the spin susceptibility x , which according to g M /V = x B describes
the relation between the magnetization and the magnetic field for small fields. Instead of (19)
the relevant potential is given by

1
vi(r) = v°(r) ¥ 5IM F ppB

and instead of M/ = F'(M) the equation M = F(M+2p5B /1) must be solved self-consistently.
Linearizing around M, which would be the magnetic moment without field, leads to

AM =M —-M, = F(M+

~ F'(M,) (AM 4 2B )

1
Solving this equation for AM, inserting M, = 0 and F’(0) = In°(EF) leads to

nO(EF) 1
M= ey el ad =gy

where yp = 2u%n°(Er)/V is the Pauli spin susceptibility for non-interacting electrons, which
is obtained if the exchange interaction is neglected. The exchange interaction leads to a Stoner
enhancement factor S = [1 — In°(Er)]~!, which diverges for In°(Er) = 1. For In°(Er) < 1
the non-magnetic state is stable, whereas for In°(Er) > 1 the ferromagnetic state is stable.
The density of states shows usually a rather detailed structure. However, in simple approxi-
mation it scales inversely to the band width V. For a constant density of states n{ for states
with quantum number [ this relation is exact (ny = (21 4+ 1)W '), because [, nfdE = Wny
is given by 27 + 1, the number of states with quantum number [. For delocalized electrons the
band width is large and the density of states is small, whereas for more localized electrons the
band width is smaller and the density of states larger. In the atomic limit the band width goes to
zero, the Stoner criterion is always satisfied and the magnetic moment is maximal according to
Hund’s first rule. Fig. 3 shows a schematic representation for the band widths of transition met-
als, rare earth metals and actinides. The 5f electrons of the early actinides and the 3d electrons
of the late transition metals from Cr to Ni have a tendency for band magnetism, whereas the
late actinides and the rare earth metals show localized magnetism with almost atomic moments
in good agreement with Hund’s rules.

Quantitative results of non-spin-polarized local density functional calculations [9] for n°(Er)
and I are given in Table 1 for some selected metals. The results in Table 1 show that Fe and
Ni satisfy the Stoner criterion In°(Er) > 1 and that Co with In°(Er) = 0.97 almost satisfies
this criterion. It is discussed in Ref. [9] that the calculated values for I in Table 1 are lower
bounds and that the value In°(Er) = 0.97 for Co does not contradict that ferromagnetism is
observed for this metal. As a matter of fact in spin-polarized calculations [8, 10], which do not
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) I

atomic number

Fig. 3: Schematic illustration for the band width W of transition metals (3d, 4d and 5d elec-
trons), rare earth metals (4f electrons) and actinides (5f electrons). The shaded rectangle rep-
resents the region favorable for band magnetism. Above the rectangle magnetism is suppressed
and below the rectangle localized (atomic) magnetism is preferred.

use the Stoner model and do not rely on an estimate of 7, the ferromagnetic state of Co has been
found to be more stable than the non-magnetic state. Thus these early spin density functional
calculations are consistent with the observed ferromagnetism of Fe, Co and Ni. The metal Pd
also has a large Stoner factor and is almost magnetic. The experimental Stoner factor for Pd is
even approximately twice as large as the one given in Table 1 in agreement with the fact that
the tendency for magnetism is underestimated by the approximation for / used in Ref. [9].

Fig. 1 shows densities of states obtained by spin density functional calculations for Fe and Co,
where the bcc structure was used for Fe and the fcc structure for Co. Except for the exchange
splitting Fig. 1 shows rather similar densities of states for both spin directions, thus indicating
the applicability of the Stoner model for these metals. Ni with fcc structure has a similar density
of states as Co, but with a smaller exchange splitting. The majority states for Co and Ni are fully
occupied, whereas in the minority states 1.7 electrons are missing for Co and 0.6 electrons for
Ni. This leads to moments of 1.7 1z and 0.6 i per Co and Ni atom. The calculated moment
for Fe is 2.2 upg. In contrast to Co and Ni, the majority d states in Fe are not fully occupied.
Thus Fe is characterized as a weak ferromagnet, whereas Co and Ni are characterized as strong
ferromagnets. Table 2 shows that the calculated moments agree well with the experimental
values.

Remark: While the discussion above was restricted to ferromagnetism, it is equally well ap-
plicable for other magnetic states, for instance for antiferromagnetic materials. Here, as Neel
pointed out in 1936, the internal magnetic field %IM has opposite sign on the two sublattices.
In a Stoner like picture the competition between ferromagnetism and antiferromagnetism has
been extensively discussed by Heine and Samson [11] who have shown that antiferromagnetism
is favored if Er is in the middle of a band, in particular if the density of states is small at Er,
whereas ferromagnetism is favored if £ is near to a band edge, in particular if the density of
states is large at Fr.
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Table 1: Densities of states n°(Er) at the Fermi energy, exchange integrals 7, their products
and Stoner enhancement factors S’ obtained in non-spin-polarized density functional calcula-
tions [9] for some selected metals.

metal | n°(Er)[Ry '] | I[Ry] | In°(Er) | S = x/xp
Na 6.2 0.067 | 0.42 1.71
Al 5.6 0.045 | 0.25 1.34
Cr 9.5 0.028 | 0.27 1.36
Mn 21. 0.030 | 0.63 2.74
Fe 42, 0.034 | 143 -2.34
Co 27. 0.036 | 0.97 38.2
Ni 55. 0.037 | 2.04 -0.98
Cu 3.9 0.027 | 0.11 1.12
Pd 31. 0.025 | 0.78 4.46

Table 2: Magnetic moments M sp 4 for Fe, Co and Ni obtained in local spin density functional
calculations [8] in comparison with the experimental values for the spin-only moments M,
and for the total moments M including the orbital contributions.

metal | Mpspalpus/atom] | Mspn[pp/atom] | Mug/atom]
Fe 2.15 2.12 2.22
Co 1.56 1.57 1.71
Ni 0.59 0.55 0.61

3.3 Ferromagnetism of Alloys

Alloys of Fe, Co and Ni and alloys of these elements with other transition metals display a wide
variety of magnetic properties since the magnetization of the pure elements can be strongly
changed by alloying. The moments of the ferromagnetic atoms can be reduced or enlarged and
parallel or antiparallel alignment of moments of the different atoms can occur. A combined rep-
resentation of the averaged moments of binary magnetic alloys is given by the Slater-Pauling
curve which is shown in Fig. 4. The Slater-Pauling curve has two main branches with slopes of
45° and -45° which meet in the middle where a maximal moment of about 2.4 1.z occurs. The
left main branch consists of Fe alloys, whereas Co and Ni alloys form the right main branch and
the subbranches. The main reason for the two different slopes is a different electronic screening
behavior. Alloys on the main branch on the right have a full majority spin band so that the
screening of the valence difference introduced by the impurity atoms is provided by minority
spin electrons. This leads to a reduced number of minority d electrons which gives increased
moments. Alloys on the other branches are characterized by the occurrence of antiparallel mo-
ments of the impurities which lead to reduced averaged moments with increasing concentration.
Here the screening is mainly provided by the majority spin electrons. The experimental results
(upper picture) have been obtained by measurements of the saturation magnetization and con-
tain an orbital contribution of about 5-10 % of the spin contribution. Therefore, the theoretical
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Fig. 4: Slater-Pauling curve from Ref. [12] for the averaged magnetic moment per atom as
function of the averaged number of electrons per atom. Important alloys for applications are
Permalloy (FeyoNigg) as a typical soft magnet and Invar (FegsNiss) because of its small thermal
expansion.

results (lower picture) for the spin moments have been scaled to take into account this effect.
For CoMn two solutions have been obtained, CoMn(1) and CoMn(2) with Mn moments parallel
and antiparallel to the bulk magnetization.

The theoretical determination of the averaged moments by spin-density functional calculations
IS not easy for these concentrated and disordered alloys. Statistical averaging over many config-
urations for many different concentrations requires a substantial amount of computing time [13]
which was not available when the results shown in Fig. 4 were calculated in 1991. For these cal-
culations the coherent potential approximation (CPA) was used which is based on an effective
medium concept, where the effective medium is obtained by the self-consistent requirement that
the averaged scattering of the electrons at A and B atoms in the effective medium vanishes. Al-
though the agreement between experiment and calculation (upper and lower picture in Fig. 4) is
not perfect, this figure shows that spin density functional theory is a powerful tool to understand
and explain magnetic properties of materials.
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3.4 Mapping to Model Hamiltonians

Although spin density functional theory can be used to determine the magnetic ground state,
the calculations, particularly for large and complex systems, often require too much computing
time. Thus a mapping to simpler model Hamiltonians is of great value, for instance to the
Heisenberg Hamiltonian

=188,
i,J

where J;; is the exchange coupling constant between the spins at sites ¢ and ;5. Such a mapping
can be obtained by constrained density functional theory [14]. Constraints are already used
in the formal development of density functional theory, for instance the density is constrained
to give the correct number of electrons and the Kohn-Sham orbitals must be normalized as
Yoo (0, @) = 1, which is guaranteed by the Lagrange parameters e; in the Kohn-Sham equa-
tion (16). The basic idea of constrained density-functional theory is the extension to quite
arbitrary constraints. The energy of the lowest state compatible with a constraint can then be
found by a modified energy functional. One example considered in Ref. [14] is a modification
of the energy functional E[n(r)] into

Eln(n)] = Eln(0)) +v {NV -/ n(z)dz} , (23)

where the constraint, guaranteed by the Lagrange parameter v, describes that the local volume
V' contains exactly Ny electrons. The minimization of (23) with respect to n(r) leads to an
additional potential v in the Kohn-Sham equations, which is constant in volume V' and zero
elsewhere. This potential must be adjusted such that the resulting density n(r) gives exactly
Ny electrons in volume V. Instead of calculating the energy from the functional E[n(r)], it is
computationally easier to calculate the energy difference with respect to a reference state, for
instance the ground state with /V; electrons in volume V. This can be done by the Hellmann-
Feynman theorem

which only requires the knowledge of the potential v(/N’). Physically, the potential v can be
viewed as the “force” necessary to constrain the system to the desired state and AFE as the
“strain energy” of the system.

An early application of constrained density functional theory is the calculation of interaction
energy differences between the ferromagnetic and antiferromagnetic configuration of impurity
pairs in metals [15]. In these calculations the local magnetic moment of one of the impurities
IS constrained to an arbitrary value M;,. = ugM and the lowest energy compatible with the
constraint is determined by a modified functional

Eln(r),m(r)] = Eln(r), m(r)] + B [MBM -/ m(z)dz} ,

where the Lagrange parameter B is a constraining magnetic field, which is constant in the cell
of one impurity with volume V" and zero elsewhere. This field is chosen such that the integral
of the magnetization m(r) over the cell gives the desired value of the moment. Similar to (24)
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Fig. 5: Magnetic interaction energy difference and constraining magnetic field for pairs of
Mn and Fe impurities on nearest neighbor sites in a Cu crystal (from Ref. [15]). Note that
the energies involved in these calculations are several orders of magnitude smaller than the
individual energies of the antiferromagnetic and ferromagnetic configurations.

the energy difference is given by

M
AE(M) = H(M")dM',
Mo
where M, is the value of M in the reference state. For instance in Fig. 5, the reference state
is the antiferromagnetic configuration, for which the moments for the two impurities have op-
posite sign. This reference state with calculated values M = —3.22 and M = —2.31 (for
Mn and Fe pairs) corresponds to the left minima of the AE(M) curves in Fig. 5. The right
minima of the AE(M) curves correspond to the ferromagnetic configuration with calculated
values M = 3.20 and M = 2.40 (for Mn and Fe pairs). Both the antiferromagnetic and the
ferromagnetic configurations are stable as the minima of the energies with vanishing constrain-
ing field B indicate. The energy differences between the ferromagnetic and antiferromagnetic
configuration are 0.14 eV for Mn and -0.13 eV for Fe pairs so that the antiferromagnetic state is
more stable for the Mn pair and the ferromagnetic state is more stable for the Fe pair. Note that,
whereas energy and field curves depend on the choice of the constraint, for instance the volume
V, the resulting energy differences between both configurations are independent of the choice.
Instead of constraining the absolute magnitude of the moment also its direction can be con-
strained. This requires a transversal field perpendicular to the direction of the moment. The
calculated energy changes can then be mapped to effective Hamiltonians. For instance, for
small deviations from the ground state, the energy difference is quadratic in the changes of the
moments .
AE(Mi:Mj) ~ b Z JijAMiAMj )
2¥)
which provides a method to calculate the exchange-coupling constants .J;; for the Heisenberg
model within density functional theory.

4 Relativistic Effects

In applications of magnetic materials, for instance permanent magnets or magnetic storage me-
dia, one usually exploits the fact that the material is more easily magnetized in a certain direction
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than in other directions. The energy needed to rotate the magnetization from a direction of low
energy (easy axis) to a direction of high energy (hard axis) is of the order of ueV to meV per
atom. The small energy difference can be attributed to relavistic effects, the magnetic dipole
dipole interaction and the coupling of spin and orbital motion of the electrons. The classical
expression for the dipole dipole interaction

BHO (r; fj)'mi (L‘_fj)'mj
.1 sz—rﬁ{—f—f?’[ m}—[zm }}

i#]

can be obtained within density functional theory as shown by Jansen [17] from the Hartree
energy part of the relativistic Breit equation. An important property of this interaction is its slow
decrease with distance like [r — 7/|=3. Thus the dipole field experienced at an atom depends
significantly on the moments located at the boundary of the sample. This results in the shape
anisotropy which is important for small samples of non-spherical shape and for low dimensional
systems like magnetic films and wires. In bulk cubic crystals the dipole dipole contribution
to the magnetic anisotropy, which is of second order in m(r), is unimportant because cubic
symmetry requires that second order terms vanish. Here the main contribution to the magnetic
anisotropy comes from spin-orbit coupling, which is a relativistic effect contained in the Dirac
equation as can seen, if the Dirac equation is expanded with respect to the inverse of the velocity
of light 1/c.

Phenomenologically the free energy density f = F'/V can be expanded into spherical harmon-
ics

PV =3 S hun(B)Yinl9, ) (25)

leven m=—1

Here odd terms in [ vanish because of time reversal symmetry. Often instead of (25) an ex-
pansion in the directional cosines («ay, as, ag) = (sind cos ¢, sin J sin @, cos ) is used in the
form

[0, ) =bo(B) + me Jaiey + Y biju(B)ovoogay + -+

i7j7k7l

where again only even terms compatible with time reversal symmetry appear. Due to crystalline
symmetry certain relations between coefficients of equal order exist so that for cubic crystals
the anisotropy can be written as

f(0,9) = Ko + Ki(afay + az05 + azai) + Koajajas + - (26)

with the coordinate axes taken along the cubic axes and for hexagonal crystals as
f9,0) = Ko+ K, sin®0 + Kysin® 0 + - - - | (27)
where ¢ is the angle between the magnetization direction and the ¢ axis. (Note that in (26) and
(27) the index ¢ of K; does not describe the order.) Values for the magnetic anisotropy constants
for the ferromagnetic elements Fe, Co and Ni are given in Table 3. In general, the anisotropy

constants K; and particularly K, are difficult to measure, since they are strongly temperature
dependent and susceptible to crystal imperfections.
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Table 3: Magnetic anisotropy constants for Fe, Co and Ni at 300 K (from Ref. [16]).

metal Fe Co Ni
lattice (bce) (hcp) (fcc)
K, [Jm=3] | 4.8-10* | 5.3-10° | 45103

Appendix

Useful relations for products of V and A, which do not commute, are
V- (AV)+A- VU = (V- AV +24.-VU =24.-VVU (28)
V x (AD) = (V x A)U — A x V¥ = BY — A x V¥, (29)

where in (28) the Coulomb gauge condition V - A = 0 was used. To derive (8) matrix multipli-
cation can be used

U, Uy — 1y v, Uy — 10y
o-u)(oc-v) = ) )
(_ _) (_ _) ( Uy =+ 10Uy, —U, Vg + 10y —U,
gV F Uy F v + 1(ugvy — uyy) — Uz U, + UV, + (U0, — uyvy)
— Uy Uy + UV, + 1(uvy — uyv,) Uz Uy + UyVy + U0, — 1(Uugpvy — uyvy)

= DL(u-v) +ic- (uxv

)
which leads to (8) for the choice u = v = p. For a constant magnetic field B the vector potential
can be written as

1 1 yB, — 2B,
A=—-rxB=—-| 2B, — B, (30)
2 2
xB, —yB,
which is consistent with B = V x A because of
8,A. — 0.A, [ B:—B
0. Ay — 0y A, —-B,— B,

By use of (28) and (30) one obtains

V-A+A-V = (Byz— B.y)V, + (B.x — B.2)V, + (Byy — Byx)V.
= (yV,—2V,)B, + 2V, —2V,)B, + («V, —yV.)B,

= XV B=-L-B (31)

and

4A* = (B, —yB,)* + (2B, — xB.)* + (yB. — zB,)*
= Y’B +2’B. + 4*B. + 2*B. + y*B} + 2°B) — 20yB, B, — 202B,B. — 2yzB,B.
= (@®+y*+2°) (B2 + B, + B2) — (¢B, + yB, + 2B.)?
= r*B?*— (r-B)* = r*B*(1 — cos® V), (32)

where 1 is the angle between r and B.



A2.18 Rudolf Zeller

References

[1] J. M. Levy-Leblond, Commun. Math. Phys. 6, 286 (1967)

[2] U.von Barth and L. Hedin, J. Phys. C 5, 1629 (1972)

[3] A. K. Rajagopal and J. Callaway, Phys. Rev. B 7, 1912 (1973)

[4] S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200 (1980)
[5] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)

[6] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh and
C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

[7] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

[8] V. L. Moruzzi, J. F. Janak and A. R. Williams, Calculated Electronic Properties of Metals
(Pergamon Press, New York, 1978)

[9] J. F. Janak, Phys. Rev. B 16, 255 (1977)
[10] J. F. Janak, Solid State Commun. 25, 53 (1978)
[11] V. Heine and J. H. Samson, J. Phys. F 13, 2155 (1983)
[12] P. H. Dederichs, R. Zeller, H. Akai and H. Ebert, J. Magn. Magn. Mater. 100, 241 (1991)
[13] P.James, O. Eriksson, B. Johansson and I. A. Abrikosov, Phys. Rev. B 59, 419 (1999)
[14] P. H. Dederichs, S. Blugel, R. Zeller and H. Akai, Phys. Rev. Lett. 53, 2512 (1984)
[15] A. Oswald, R. Zeller and P. H. Dederichs, J. Magn. Magn. Mater. 54-57, 1247 (1986)

[16] E.du Trémolet de Lacheisserie, D. Gignoux and M. Schlenker Magnetism: Fundamentals
(Springer, New York, 2005)

[17] H. J. F. Jansen, Phys. Rev. B 38, 8022 (1988)



A 3 Magnetism in Reduced Dimensions
Stefan Bllgel
Institut fir Festkorperforschung
and
Institute for Advanced Simulation
Forschungszentrum Julich GmbH, D-52425 Jiilich
Contents
1 Introduction 2
2 Models 4
2.1 StonerModel . . . . ... 4
2.2 Role of Coordination Number . . . . . ... .. ... ... .. ... ... 6
2.3 Heisenberg ModelandBeyond . . . . . . .. ... ... 8
2.4 Critical Temperature . . . . . . . . .. 10
2.5 Orbital Moment and Magnetic Anisotropy . . . . . . . . . . . .. 12
2.6 Dzyaloshinskii-Moriya Interaction . . . . . . ... ... .. ... ... .... 18
3 The Rashba effect at metallic surfaces 19
3.1 NonmagneticSurfaces . . ... ... .. . . . . ... 19
3.2 Semimetal Surfaces . . . . . . . .. 22
3.3 MagneticSurfaces . . . . . . . . ... 25
4 Ultrathin Films 27
4.1 (100) Oriented Monolayers on Nonmagnetic Substrates . . . . . . ... .. .. 29
4.2 (111) Oriented Monolayers on Nonmagnetic Substrates . . . . . . .. ... .. 32
4.3 Magneto-Interlayer Relaxation . . . . . ... ... ... ... . ........ 35
4.4 Orbital Moment and Magnetic Anisotropy . . . . . . . . . .. ... ... ... 37
4.5 Spin-Orbit Induced Homochiral Mesoscale Spin Spirals . . . . . ... ... .. 42



A3.2 Stefan Blugel

1 Introduction

In this article we focus on two issues: (i) spin related behavior of electrons propagating in
the potentials with structure inversion asymmetry (SIA). Owing to the spin-orbit interaction,
inversion asymmetric potentials give rise to a Bychkov-Rashba spin-orbit coupling causing a
spin-splitting of a spin-degenerate electron gas. In this article we show that the rich spin-orbit
driven physics in potentials with SIA is effective also for electrons at metallic surfaces. We il-
lustrate the Rashba spin-splitting of surface electrons at noble-metal surfaces, e.g. Ag(111) and
Au(111), at the semimetal surfaces Bi(111) and Bi(110), and the magnetic surfaces Gd(0001)
and O/Gd(0001). E.g. on the Bi(110) surface the Rashba spin-splitting is so large that the Fermi
surface is considerably altered, so that the scattering of surface electrons becomes fundamen-
tally different. On a magnetic surface, the Rashba splitting depends on the orientation of the
surface magnetic moments with respect to the electron wavevector, thus offering a possibility
to spectroscopically separate surface from bulk magnetism.

(if) The second issue is the dimensional aspect of itinerant magnetism, in particular of those
systems including d electrons, as relevant for the magnetic ground-state properties of metallic
surfaces, interfaces, multilayers, ultrathin films, step edges, or magnetic clusters deposited on
surfaces. Considering the vast number of possible systems, a number growing fast with the
number of constituent atoms, the surface and interface orientation, the chemical and structural
roughness at interfaces, the electronic nature of the substrate (metal, semiconductor, metal), an
exhaustive review is unattainable. Instead we discuss chemical trends in order to develop an
intuition helpful to understand also new systems or envisage new effects not investigated yet.
The simplest low—dimensional systems are isolated atoms, whose spin moments as function
of the the number of d electrons are well described by Hund’s first rule: the spins of all elec-
trons are aligned in parallel as long as no quantum number is occupied more than once. Thus
nearly all of the 30 transition—-metal atoms have magnetic spin moments. The largest possi-
ble d moments occur at the center of each series, i.e. 5 ug for Cr and Mn in the 3d series.
On the other hand, it is well-known that only 5 of 30 transition metals remain magnetic in
their bulk crystalline phase: Co and Ni are ferromagnetic, Cr is antiferromagnetic, and Mn
and Fe are ferromagnetic or antiferromagnetic depending on their crystal structure (cf. Fig. 1).
Low-dimensional transition—metals should fall in between these two extremes. Magnetic ma-
terial may be envisaged, which is nonmagnetic as bulk metal but magnetic as nano-structure.
Although these arguments do apply, band narrowing, charge transfer, lift of degeneracies, struc-
tural, morphological or thermodynamical changes mire the interpolation and it took about 10
years to settle the “relatively simple” problem of the surface magnetism of Ni(100) [1]). Totally

T T T T T T T
5+ OO —
:f 4 - /" atom o, - . ) )
ot Fig. 1. Local magnetic moments of isolated 3d
é 3 - o -| atoms (empty squares connected by dashed line),
S e o AN ferromagnetic (solid squares connected by solid
= 2 -0 ® 71 line) and antiferromagnetic (diamonds connected
8 1L | by dotted line) 3d bulk metals. The magnetism of
o bulk the atom includes only the moment due to the d
o \ \ \ \ \ \ electrons. For the bulk metals the experimental

Ti vV Cr Mn Fe Co Ni spinmomentare shown.
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Table 1: Typical ground-state energies E in eV/atom for 3d metal films.
E (eV/atom)

cohesive energy 55

local moment formation 1.0

alloy formation 0.5
magnetic order 0.2
structural relaxation 0.05

magnetic anisotropy 0.0001--0.002

unclear is the magnetic coupling between the moments of atoms in systems of reduced dimen-
sions, in particular if the frustration of the magnetic interactions comes into play as for example
in exchange-bias systems.

The magnetic ground-state properties may be divided into (i) the formation of local moments
of different sizes (ii) the interaction between the local moments responsible for the formation
of the magnetic order, the magnetic coupling at interfaces or across spacer layers, and (iii) the
magnetic anisotropy energy, which couples the direction of the magnetization to the lattice and
determines the easy and hard axes of the magnetization. At this point it may be useful to put the
magnetic energies involved in (i)—(iii) into a general perspective by comparing them in Table 1
with the structural and compositional ground-state energies. From the relative importance of
the different energies it is evident that the local moment formation has a considerable influence
on the stability, alloy formation, atom arrangement and atom relaxation at the interface. Since
the local moments may change quite substantially at the interface, materials with new and un-
known phases [2], crystal structures and magnetic structures [3] are to be expected. Despite the
technological importance and the importance for the finite temperature properties of thin films,
the anisotropy energy is a rather small quantity The anisotropy energy depends on all structural
and electronic details of an interface, while in turn, with the exception of the magnetostriction,
not much influence on structural aspects are expected. In this sense the problem of the magnetic
anisotropy can be tackled after the interface is completely determined otherwise.

The issues (i) and (ii) cross in the point that electrons at a SIA invironment of surfaces or
interfaces, common to all nanostructures, gives rise not only to the well-known symmetric
Heisenberg exchange but in addition also to a less known Dzyaloshinskii-Moriya-type (DM)
antisymmetric exchange. Depending on the strength of the DM interaction, we expect in low-
dimensional magnets deposited on substrates, such as ultrathin magnetic films, homochiral, i.e.
chirality broken two- or three-dimensional magnetic ground-state structures between nanometer
and sub-micrometer lateral scale. Little is known about the strength of the DM interactions in
low dimenional magnets and this is one of very active research areas.

There are several low-dimensional systems and phenomena which are not covered in this chap-
ter. To these belong the magnetic chains, wires, clusters in the gas phase, the molecular magnets
and the Kondo-Effekt of adatoms on surfaces. When the growth of thin films is repeated to form
multilayers, in particular those of thin magnetic films separated by non-magnetic spacer layers,
an exchange interaction between the films across the spacer layer occurs, which is known as the
interlayer exchange coupling. The emphases of this lecture is not on thermodynamic properties
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of low-dimensional systems, they are only included at minimum. The work which | present are
basically predictions, analyses and understanding of the electronic structure, magnetic moment,
and magnetic structure as — results obtained from the density functional theory introduced in
the lecture of Dr. Bihlmayer and Dr. Zeller.

2 Models

In this section the reader is reminded at the theoretical concepts used to predict and analyze
the results. The theories and model have been in part been introduced by previous speaker,
e.g. Dr. G. Bihlmayer and Dr. R. Zeller. Further, simple models are discussed to rationalize the
results.

2.1 Stoner Model

The occurrence of ferromagnetism can be studied on the basis of the Stoner criterion introduced
in the chapter Density Functional Theory of Magnetism:

The Stoner criterion is an instability condition which expresses the competition between the
exchange interaction in terms of the exchange integral 7 which drives the system into ferromag-
netism for large I and the kinetic energy in terms of the nonmagnetic density of states (DOS)
n(Ew) at the Fermi energy Er. The Kinetic energy rises if the system becomes magnetic, the
more the wider the band width or the lower the density of states, respectively. A big exchange
integral and a large nonmagnetic DOS at the Fermi energy favors ferromagnetism. When fer-
romagnetism occurs, the double degeneracy of the energy bands ¢ is lifted, majority states e
and minority states i, are rigidly shifted in energy by the exchange splitting 7 M/, where M is
the value of the local magnetic moment,

1 1
€k = € — §[M and €| = €E+§]M . (2)

The rigid band shift is a good model if the shift is small as in case of bulk ferromagnets. Devi-
ations can be found for thin films, as the magnetic moments and thus the exchange splitting is
large.

The Stoner criterion in equation (1) can be generalized describing the instability against the
formation of a frozen spinwave of wave vector ¢,

Obviously the local DOS was replaced by the ¢ dependent susceptibility x4, a quantity which
is expressed in the Heisenberg model by .J(g). Within equation (3), antiferromagnetism is just
a special case. While the DOS at Er is easily accessible by experiment or electronic structure
calculations, the static susceptibilities y;(Er) are not. To make use of equation (2) an approx-
imate criterion for antiferromagnetism is derived which makes explicit use of the local DOS.

Small magnetic moments with the same magnitude M, but possibly different directions ]\7[j at
different sites 7, induce in linear response theory local moments M; at sites 4

M@' = ZXU(EF) M]\/Z\] . (4)

J
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Fig. 2: Graphical illustration of equation (8) for a DOS typical for transition-metal monolayers
on (001) oriented noble metal substrates.

The staggered susceptibility describing a particular magnetic state (M) is then expressed as

—

XM:ZXOiMO‘Mi . ®)
Particular examples of this staggered susceptibility are the ferromagnetic (xrm)
XFM =N = Z Xoi (6)

and the antiferromagnetic (x arm)

XAFM = Z (—1)@) X0i (7)

i

susceptibilities. Assuming that for 3d metals the nearest-neighbor interaction is the most domi-
nating one, xo; can be neglected for all sites beyond nearest neighbors (yo; = 0 for i > 1), and
xrM and x apy are given approximately by

n(E) = Xoo(E) + x01(E), and xarm(E) = xo00(£) — x01(E) , (8)

where oo (F) is the local or atomic susceptibility, respectively, at the energy E. The energy de-
pendence of x is fairly simple. It follows from atomic Hund’s rule-type arguments: The max-
imum spin M occurs for half band-filling, hence the atomic (local) susceptibility y = OM/0H
will also be largest. From equation (8), we can obtain an approximate form for y gy USINg
only DOS information. This is illustrated in Figure 2. As function of the d band-filling, from V
to Ni, the Fermi energy sweeps from the left to the right through the DOS. If the Fermi energy
is positioned at the center of the band as for Cr, and the DOS is low but the antiferromagnetic
susceptibility is high, and antiferromagnetism is expected. If the Fermi energy is closer to the
end of the band, the antiferromagnetic susceptibility is small but the DOS is large and ferro-
magnetism is expected as for Fe, Co, and Ni. Mn and Fe are at the edge of both magnetic states,
and depending on circumstances different magnetic ground states can be found. Compare also
to the calculated DOS, Figure 12, in Sect. 4.1
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2.2 Role of Coordination Number

As discussed in Sect. 2.1 the Stoner criterion for ferromagnetism, equation (1), depends (i) on
the Stoner parameter  and (ii) the DOS n(E¥r) at the Fermi energy Er.

(i) The exchange integral [ is an intra-atomic, element specific quantity, and in simplest approx-
imation independent of the local environment, the structure and the site of a given atom, e.g.
surface atom or bulk atom. According to Gunnarsson [4] and Janak [5] a global trend

Isg > Lig > Isq %)

was found for the exchange integrals of the 3d, 4d, and 5d transition-metal series.
(i1) Focusing on the d electrons as relevant electrons for itinerant magnetism, the DOS depends
on both the coordination number N,,, and the hopping matrix elements h, between the d elec-
trons. This can be understood as follows: The energy integral [, ns(e) de = 2¢ + 1 over the
band width, W, of the local DOS of angular momentum quantum number ¢(= 2) is normalized
to 27 + 1 states. Thus, in simplest approximation possible (e.g. rectangular shaped DOS), one
can assume that the local DOS scales inversely proportional to the band width, 1/,
E ! 10
n(Ep) ~ W (10)
At the atomic limit the band width converges to zero, the Stoner criterion is always fulfilled
and moments in accordance with Hund’s first rule will be found. In general the DOS consists
of contributions from electrons in s, p, d, and f states. For transition metals by far the largest
contribution comes from the d electrons, and the d—d hybridization determines the shape of the
density of states. Therefore, in the following discussion we restrict ourselves to d electrons and

write .
The average local band width Wd(ﬁi) for an atom 7 at position R, can be estimated in a near-
est neighbor tight-binding model, applicable for the itinerant but tightly bound d electrons of

transition-metal atoms, to be

Wy ~ Wy (R) = 21/ Nan(R;) ha(Run) - (12)

According to equation (12) the band width depends on two quantities: (a) the hopping matrix
element hy of the d electrons and (b) the number of nearest neighbor atoms or coordination
number N,,,,.

(a) The hopping matrix element depends on the overlap of the d wavefunctions. It decreases
with increasing lattice constant or distance R, to the nearest neighbor atom and for a given
lattice constant it increases with the extension of the wavefunction or, equivalently, the number
of nodes. In Figure 3 the band widths of 3d, 4d, and 5d bulk transition-metals are schematically
shown, together with the band widths of rare earths and actinides. In line with the arguments
of increasing number of nodes from 3d to 5d wavefunctions a clear “macro trend” between the
transition-metal series is visible summarized as follows:

hsa < hag < hsg = Wsq < Wiy < Wsg = ngqg > Nug > Nsg (13)

Within each transition-metal series there exists an additional “micro trend”: due to the incom-
plete screening of the Coulomb potential of the nucleus by the d electrons, the d wavefunctions
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Fig. 3: Schematic illustration of the band width W of the transition-metals together with rare
earths (4f) and actinides (5f), all in the bulk phase. The 5f electrons of the early actinides
and the 3d electrons of transition-metals from the middle to the end of the 3d series (Cr to Ni)
show itinerant magnetism, while the magnetism of the late actinides and the rare earths is best
described as localized magnetism, and their magnetic properties can in good approximation be
explained in terms of Hund’s rule.

at the beginning of the transition-metal series are more extent than at the end of the series, thus
the hopping matrix element at the beginning of the series is larger than at the end, with the
well-known consequences for the band width 17" and the DOS n(Er).

(b) The smaller the coordination number N,,,, the smaller the d—d hybridization and the smaller
is the band width. Let’s consider for example the coordination number of an atom in the environ-
ment of a fcc crystal (Vi = 12), of an atom in the (001)—surface of the fcc crystal (N(go1) = 8),
located in a two-dimensional (001) monolayer film ( Ny, = 4) and of an atom in a monoatomic
chain (Nu.in = 2), keeping the nearest neighbor distance fixed (R,,, = constant) and keeping
the bonding strength fixed (hy = constant). Under these circumstances, one obtains for the
ratio of the band widths

Wi g ME 000 ppee — 041 0 058 1 082 ¢ 1,
or the local DOS
pehain . pML- Q0D plee - — 945 0173 0 122 ¢ 1. (14)

Thus, the reduction of the coordination number leads to less d—d hybridization, consequently to
band narrowing, and in low-dimensional structures the tendency towards magnetism is consid-
erably boosted. Accordingly, one can expect, that transition-metals, which are nonmagnetic as
bulk metals, may become magnetic at surfaces or as ultra-thin films. A nice manifestation of
these arguments was recently reported for the size and shape dependence of the local magnetic
moments in Fe clusters on the Ni(100) surface [6]. The arguments put forward here for the
increased ferromagnetism in reduced dimensions can be carried over directly to the increased
antiferromagnetic susceptibility.

The magnetic properties are expected to depend also on the surface or film orientation, because
along with a change of the surface orientation goes a change of the coordination number N,
(cf. Table 2) as well as a change of the nearest neighbor distance 12 between the surface atoms
and R, between the surface atoms and the atoms in the next layer. For a fcc lattice, the (111)
surface is the most densely packed one, and we expect for it the smallest enhancement of the
magnetic moments. Among the three low-index surfaces, with the orientation (001), (011), and
(111), the (011) surface leads to the most open surface. For the latter we expect the largest
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Table 2: Coordination number N,,,, interlayer distance d, point symmetry S, and packing
density p (fraction of the area of the surface unit cell, covered by atoms with an atom radius of
touching bulk atoms) for a fcc lattice. Only the 3 low-index surfaces, (001), (011), and (111),
are considered. « is the lattice parameter of the simple cubic unit cell.

Noyn S d/a p

(111) 9 C5 05774 0.9068
(001) 8  (, 0.5000 0.7854
(011) 7 (b, 0.3536 0.5554

magnetic moments. At surfaces or ultrathin films of bcc lattice type the trend should be exactly
the opposite. The most densely packed surface is the (011) surface for which we expected the
smallest enhancements of the magnetic moments. The (111) surface is the most open one. This
surface is already close to a stepped one.

The implication of the coordination number, discussed so far is an important aspect in interface
magnetism, but it is not the whole story. Further important aspects neglected so far have to
be taken into account in order to give a qualitative correct description of the magnetism at
interfaces.

2.3 Heisenberg Model and Beyond

To predict the magnetic ground state of a low-dimensional magnetic system can be a highly
nontrivial problem. In cases, for example, where competing exchange interactions between
neighboring atoms cannot be satisfied, exchange interactions are frustrated giving rise to a mul-
titude of possible spin-structures. In the past, the magnetism of complex spin structures of
itinerant magnets has been almost exclusively discussed within the framework of model Hamil-
tonians, e.g. the classical Heisenberg Hamiltonian,

HQ-spin = - Z Jij ‘S_:z : ‘S_)’] . (15)
2

The spins localized on the lattice sites ¢, j are considered as classical vectors S, with the as-
sumption that the spins on all lattice sites have the same magnitude S:

5?2 = §2 foralli. (16)

The exchange interaction between the spins is isotropic and described by the pair interaction
Ji;. In localized spin systems the J;; can be safely approximated by the ferromagnetic (J; > 0)
or antiferromagnetic (J; < 0) nearest-neighbor (n.n.) interaction, i.e. J;; = 0 for all ¢, j, except
for J,.,. = Ji. Also in itinerant magnets .J; often dominates over the rest of the further distant
pairs, however, an attempt to reproduce 7 solely from .J; produces results of limited quality. In
many cases interactions between atoms as distant as 20 sites need to be included to give reliable
results.

Exchange interactions beyond the classical Heisenberg model can be motivated from a pertur-
bation expansion of the Hubbard model [7]. Expanding the Hubbard model into a spin model,
replacing the spin operators by classical spin vectors, a second order perturbation expansion
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reproduces the classical Heisenberg model. The fourth order perturbation treatment (the third
order is zero in the absence of spin-orbit interaction) yields two additional terms of different
form. One is the four-spin exchange interaction (4-spin):

Hy-spin = Z Kiji[( §§ gkgl) + (5; k)(glgz) - (gzgk)(ggsz)} : 17)

ijkl

The 4-spin interaction arises from the hopping of electrons over four sites, i.e. the process
1 —-2— 3 — 4 — 1. The second term, resulting from the hoppingl — 2 - 1 — 2 — 1,1is
the biquadratic exchange:

Hbiquadr = - Z BZJ(S;Z . gj)Q . (18)

The exchange parameters J;;, K1, and B;; depend on the details of the electronic structure and
it is known [8] that for transition-metals the sign and magnitude are rapidly varying functions
of the d-band filling. In thin films, the nearest neighbor exchange constants scaled by the
appropriate power of the magnetic moment, S*K, and S*B;, are about one order of magnitude
smaller than S2.J;, which is for example for Mn/Cu(111) about 30 meV [9]. The higher order
spin interactions have then the effect, depending on the sign and value, to lift the degeneracy of
magnetic states which are degenerate in the Heisenberg model.

In itinerant magnets, the electrons that are responsible for the formation of the magnetic state
do participate in the formation of the Fermi-surface and hop across the lattice. Thus, it is by
no means clear how far a short-ranged n.n. interaction or even how far the Heisenberg model,
and models beyond that, can go in giving a sufficiently good description of the physics of
itinerant magnets at surfaces and films. We believe that the interplay of ab initio calculations
with model Hamiltonians provides a powerful approach to investigate the magnetic structures of
complex magnetic systems as low-dimensional magnets and to deal with their thermodynamical
properties.

For our purpose here, the value of the Heisenberg model lies in two facts: (i) to construct a zero-
temperature phase diagram of relevant spin states as function of the exchange parameters J;; and
(ii) that a spin-spiral state, SSDW, with a propagation vector ¢ in the first Brillouin zone (BZ)
is a fundamental solution of the Heisenberg model for a Bravais lattice. On a Bravais lattice it
IS convenient to write the spin on lattice sites in terms of their discrete Fourier components §q~.
The Heisenberg Hamiltonian can then be written in the simple form

Hy-gin = =N Y _J(§) S;- S (19)

The summation goes over the reciprocal lattice vectors ¢. N denotes the number of lattice sites
in the crystal.

- o

=" Jij e MRR Z Jo g, e MR = J(—q) = (@) (20)
4.J

are the Fourier transformed exchange constants and R; is the real-space coordinate of lattice
site 7. The lowest energy

E(Q) = —-NS*J(Q) (21)
is found for the magnetic ground state §@ of the SSDW with wavevectors +@Q (as well as
symmetry related Q vectors) which are obtained by minimizing the energy equation (19) under
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the condition equation (16). The corresponding spin structure are helical spin spirals equation
IS given by

—

M; = M(cos(7- R;)sin 9, sin(7- R;) sind, cos ¥) , (22)

for ¥ = 90° and M; = —gupS;. For particular Q vectors, e.g. @ = +27/a(0,0,1/2) one
may find the uudd-state as ground state, a collinear bilayer antiferromagnetic state of ferromag-
netic double layers, which couple antiferromagnetically. This state, for example, was found in
calculations for regime 1l of fcc-Fe films on Cu(001) [10].

In two dimensions Q is typically located at high-symmetry points (lines) of the two-dimensional
Brillouin zone, where the energy equation (21) as function of the g-vector should have an ex-
tremum, a maximum, a minimum (or a saddle point), depending on the exchange constants
Ji;, and the symmetry of the high-symmetry point. In principle, one cannot exclude that
the minimum of the energy will be located at any arbitrary point along the high-symmetry
lines, representing an incommensurate spiral spin-density wave. In practice, we perform first-
principles total energy calculations E [n(7), m.(7)|{q}] for flat spin-spirals along the high sym-
metry lines to gain an overview of possible minimum energies E(@). The role of higher order
spin interactions are then investigated carrying out constraint calculations of the total energy
E[n(7), m(7)|{e}] for particular paths of magnetic configurations. Zero-temperature phase dia-
grams inthe Jo; - - - Jo; Space are very helpful to reduce the relevant phase space of possible spin
structures. This recipe had been followed in Sect. 4.1 and 4.2 to explore the magnetic ground
state of thin films. The above described mapping of ab initio calculations to spin-models re-
lies on the assumption, that the magnetic moment does not depend on the relative difference
of the magnetization axis between atoms. For itinerant systems this is not necessarily guaran-
teed. The change of the moment with respect to the relative quantization axis can be mapped
on spin-models introducing also higher order spin interactions.

2.4 Critical Temperature

It is well known that magnetic excitations in itinerant ferromagnets are basically of two different
types, namely, the Stoner excitations associated with longitudinal fluctuations of the magnetiza-
tions, and the spin-waves or magnons, which correspond to collective transverse fluctuations of
the magnetization direction. Near the bottom of the excitation spectrum, the density of states of
magnons is considerably larger than that of the Stoner excitations, so that the thermodynamics
in the low-temperature regime is completely dominated by magnons. Stoner excitations can
be savely ignored. Thus, it seems reasonable to extend this approximation up to the critical
temperature, 7., to neglect the Stoner excitation systematically, and to describe the transver-
sal fluctuations by the Heisenberg model expressed in equation (15) with exchange parameters
determined from first-principles. An overview over the current applications along this line of
mapping first-principles results on Heisenberg-type Hamiltonians to study the thermodynamical
properties of bulk and low-dimensional magnets can be found in the paper of Turek et al. [11].
Below the critical temperature, the so-called Curie temperature T, for ferromagnets or the Néel
temperature, Ty, for magnets with more complex magnetic phases, the spontaneous magneti-
zation remains finite, while it is zero above 7. The phase transition is of second order, i.e.
the spontaneous magnetization which is the order parameter characterizing the phase transition,
vanishes continously at 7. A second order phase transition is governed by the principle of uni-
versality, where a system close to the phase transition does not depend on details of the system
such as its material parameters or the geometry of the sample, but rather on the symmetry of the
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underlying model and the dimension of the spin, which is three for the Heisenberg model. In this
lecture we are interested in estimating the critical temperatures as these are non-universal quan-
tities, and of great practical importance. It is certainly important to know whether cryogenic,
room temperature or elevated temperatures are required to observe particular phenomena.

A first simple estimate of the Néel temperature for a three-dimensional system exhibiting a
helical spin-spiral ground state with wave vector Qis given by the mean-field approximation
(MFA) to the Heisenberg Hamiltonian, which leads to

9 . 2
kg TAFA — §SQJ(Q) and kpTY™ (nn.) = gSQNnnJl ) (23)

—

where kg is the Boltzmann constant. For the ferromagnetic state, @ = (0,0, 0), the left equa-
tion (23) gives the Curie temperature in the MFA, T3, expressed explicitely in the right
equation in the nearest neighbor approximation to the exchange interaction. N,,, is the coor-
dination number of nearest neigbhor atoms and .J; is the interaction strength as introduced in
Subsect. 2.3. The MFA gives the right proportionality of Tz with respect to the number of
neighbors, but has also a few deficiencies. Besides overestimating 7 for three-dimensional
systems by typically about 20%, TA' does not depend on the lattice structure nor on the di-
mensionality of the system. These shortcomings are remedied treating the Heisenberg model in
the random phase approximation (RPA) [12, 13], which gives for the critical temperatures

1 3 1 1 1
kg TRPA ZNSQZ 7(G) — J( L7 T TR, N W
R - D JQ) -G+ Q) - 17— Q)
9 0.660 sc
and keTE A (nn.) = §SQNWJ1 -¢ 0.718 bee . (24)
0.744 fcc

The RPA gives weight to the low-energy magnon excitations E(q) o J(Q) — J(q) in the
summation over all modes. This provides estimates of 7 in close vicinity to the numerical
analysis using classical Monte-Carlo simulations [14] discussed in detail in the book of Landau
and Binder [15].

Both approximations show that the Curie and Néel temperature depend on the number of nearest
neighbors and one expects that the critical temperature 7 decreases if the dimensionality of
the system is reduced. But both approximations show a qualitatively different behavior for low-
dimensional magnets. The mean-field approximation overestimates the tendency for long-range
order and predicts always a phase transition to ferromagnetic order in the Heisenberg model,
no matter whether we have a one, two or three dimensional system, whereas TX™* = 0 already
for two-dimensional systems. This is consistent with the theorem of Mermin and Wagner [16],
which states that in two dimensions there is no spontaneous long-range ferromagnetic order for
isotropic Heisenberg models with short-range interaction (Zj Jijrfj < 00) at finite temperature.
In thin films the long range order at finite temperature is stabilized by the magnetic anisotropy,
which is practically always present. It opens a gap A in the excitation spectrum of the spin-
waves, E(q) < A + J(Q) — J(g), and supresses low-energy long-wavelength fluctuations
which occur for low temperatures. According to a renormalization group analysis of Erickson
and Mills [17, 18] the transition temperature in two dimensions, TéQD), scales with the transition
temperature of the three-dimensional Heisenberg model which is renormalized by a logarithmic
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Fig. 4: Critical temperature of a two-dimensional magnet as function of the uniaxial anisotropy
following equation (25). The function startes at zero for X' = 0. Note its rapid growth in the
vicinity of the origin as shown in the inset at magnified scale.

factor,

2
T8 = 18P (25)

C )
In|( 2= k1)
4 K

which contains the strength of the uniaxial magnetic anisotropy in terms of a constant K (see
Subsect. 2.5). This result is displayed in Fig. 4. T vanishes in the isotropic limit (X — 0) in
accordance with the Mermin Wagner theorem. Interestingly, for finite K there is a rapid increase
of Tt reaching reasonable values, of say 20% of the critical temperature in three dimensional
systems, for anisotropy values of less than a percent of the ferromagnetic coupling constant.
Consider for example Fe, with a shape anisotropy of 0.140 meV, which corresponds to 1.63 K on
the temperature scale. This is only 0.14% of the Curie temperature of Fe, TégD)(Fe) = 1183 K,

but causes already a Curie temperature for a Fe film of 7" (Fe) = 0.27 - TS (Fe) = 320 K.
Thus at any finite anisotropy, there is a critical temperature, where the spin degree of freedom
is frozen out due to the presence of the anisotropy, i.e. the dimension of the spin is reduced
from three for the Heisenberg model to one, spin-up and -down. In terms of universality the
Heisenberg model with any finite anisotropy value is in the universality class of the Ising model,
and the Ising model shows a phase transition in two-dimensions.

In one dimension even the Ising model does not show long-range order at finite temperatures.
Although for quasi-one-dimensional magnetic chains, these are chains of finite size, there is
strictly speaking no remanent magnetization or long-range order, but there is a temperature,
known as blocking temperature, below which a finite chain seems to a have a spontaneous and
remanent magnetization, with long-range order in the chain. In reality, this magnetic order is
accompanied by a slow relaxation [19]. The relaxation rate depends on the magnetic anisotropy
and can be of macroscopic times, such that a quasi-one-dimensional chain appears as a ferro-
magnet as it occurs in the experiments of Gambardella et al. [20] in 2002.

2.5 Orbital Moment and Magnetic Anisotropy

A piece of magnetic material is typically magnetically anisotropic. This means, besides the
isotropic exchange interaction there are additional interactions, which make the total energy de-
pend on the orientation of the magnetization as measured with respect to the crystal axes and the
sample shape. This orientation dependent energy contribution is called the magnetic anisotropy
energy (MAE), Eyvag, given in units of energy per atom throughout this article. Without this
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effect of the magnetic anisotropy, magnetism would have been hard to discover and possibly
useless. In some way or the other, almost all applications of magnetic materials hinge on the
fact that it is easier to magnetize a magnetic material in one direction than another. The mag-
netic anisotropy is responsible for the occurrence of easy and hard axes, stabilizes magnetic
order against thermal fluctuations in dimensions where the exchange interaction alone would
not suffice (see Subsect.2.4), and limits the width of a magnetic domain wall. It is for exam-
ple responsible for the bimodal stability of magnetic domains with uniaxial symmetry, which
allows the two possible magnetization directions in space to be interpreted in terms of bit “0”
or “1”. This makes magnetism very valuable for magnetic storage media. Since the magnetic
anisotropy is strongly related to the crystalline symmetry and the shape of the samples, a general
expression of Eyar Will be a complex function of the orientation of the magnetization relative
to the crystal axes. In low-dimensional systems twofold symmetries are the most relevant ones
and the magnetic anisotropy is then expressed as

HMAEZZ@'Ki'gm (26)

where the tensor of single-site anisotropy constants, K, determines the strength of the anisotropy
as well as the direction of minimum and maximal energy, named easy and hard axes, respec-
tively. In perfect thin films and wires the presence of a surface holds then responsible for an

uniaxial anisotropy energy normal to the surface, i.e. all components of K, are zero except
K7 = K% for perfect films and K** = 1/2K6** and K}Y = 1/2K ¥ for isolated wires.
After expressing S; in the form of equation (22), the uniaxial MAE takes the angular angular
dependence

Eyvae(f) = —K cos? 0 . 27)

6 denotes the angle between the magnetization and the film or wire normal and K = AE\ag =
Eﬂfw —E&KE is the uniaxial anisotropy constant also given in energy per atom. The total MAE,

El(vtﬁ)E = NxFEuvae = VEuag, Of the system depends then on the number of atoms, NV, in it.
Frequently, the MAE is also expressed in terms of an energy density &yiag. By definition, K >
0 (K < 0) describes the case of a preferred direction of the magnetization perpendicular, L,
(parallel, ||) to the film plane or wire axis. Additional higher symmetries in plane, for example
a fourfold symmetry in a (100) oriented film plane, corresponds to anisotropy contributions
which are smaller in energy than the uniaxial anisotropy and are neglected here. The anisotropy
constant depends sensitively on the chemical elements involved, structural details, details of the
electronic structure and the dimensionality of the system.

The microscopic origins of the magnetic anisotropy are the magnetic dipolar interaction and the
spin-orbit interaction. The dipolar interaction is of long range and senses the outer boundaries
of the sample. This results in the shape anisotropy. Discussing long range contributions, the
underlying atomistic lattice describing the crystallinity of the system can be neglected and the
shape anisotropy is described in terms of a continuum theory. Any contribution to the MAE
beyond the continuum theory taking explicitely the crystallinity of the system into account is
summarized as magnetocrystalline anisotropy energy (MCA). Both the dipolar and the spin-
orbit interaction contribute to the MCA and the total anisotropy constant K,

K= Kshape + K 1(v(lhcpz)x + Kﬁ(é)A ) (28)

is just a linear superposition of the different contributions.
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The shape anisotropy constant, Kp.p in atomic Rydberg units per atom of a perfectly flat film
of infinite extension or an infinitely long perfectly cylindrical wire is given by the local magnetic
moment m and the atomic volume V" as

2 m? 2 m?

film wire
K = 2T—— and = —T—=—
shape 2 Vv shape 2 Vv )

(29)

all expressed in atomic units, m in pg/atom, V in a.u.® and the speed of light, ¢, by the inverse
of the finestructure constant «, ¢ = 2/«. The negative sign denotes that the shape anisotropy
pulls the magnetization into the film plane or along the wire axis. For bcc Fe, for instance, with
a bulk magnetic moment of 2.215 up per atom and a lattice constant of 5.42 a.u., Kiﬂg})e is equal
to —0.140 meV/atom. The long range interaction senses also the interface or surface roughness
which is always present in real films. According to Bruno [21] the roughness gives rise to an
effective perpendicular contribution to the shape anisotropy whose order of magnitude depends
on the parameters characterizing the roughness. Obviously K™ and K3 is the same for
all atoms irrespective of their position in the film and K is thus homogeneous across the film
or wire. The same is true for any finite ellipsoidal structure, for any other finite structure, e.g.
a nano-pattern structure on a surface, K, becomes inhomogeneous and becomes typically
much smaller at the boundary of the structure. For bulk samples, thick films, patterned nanos-
tructures and wires the shape anisotropy is frequently the most important of the anisotropies.
For thin films and wires of a few atomic layers, the assumption that the magnetization can
be treated by a continuous magnetic medium is no longer valid. Instead, the magnetic dipole-
dipole energy has to be evaluated explicitely. In transition-metals, the magnetization distribution
around the atom is almost spherical and is thus treated to a good approximation as a collection
of discrete magnetic dipoles, which are regularly arranged on a crystalline lattice. The dipolar
energy Eqi, per atom experienced by a dipole at site ¢ due to the presence of ferromagnetically
aligned dipols on all other sites j can then be expressed as
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¢;; is the angle between the direction of the magnetic moment m of the dipoles at sites ¢ or j
given in units of Bohr magneton and the vector ﬁm connecting atoms 7 and j. R;; denotes
the relative distance between these dipoles or atoms, respectively. The 6-dependence expresses
explicitly the fact that the dipole-dipole interaction contributes to the magnetic anisotropy. Ob-
viously, in thin films and wires the anisotropy energy depends on the position of the atom 1
normal to the surface or wire axis, respectively, and as such explicitly on the film thickness or
wire diameter (in difference to Kg,ap. Where all atoms have the same value). For crystalline
thin wires and films the sum in equation (30) can be evaluated straight forwardly with fast con-
verging summation techniques [22, 23]. Draaisma et al. [24] have worked out in detail the layer
dependent dipolar anisotropy K c(ﬁi) In general, the outer atoms experience values of Kg;, that
are appreciably smaller than those of the inner layers which finally approach Kg,.,e. The inner
atoms reach 95% of K., after about 15A below the surface. The exact details depend on the
crystal structure and surface orientation, e.g. a reduction between 25% and 45% of Kgp,pe Was
reported for a (100) oriented fcc or bcc monolayer, respectively. The deviation of Ky, from
Knape gives K %P in equation (28), the dipolar contribution to the MCA which occurs here due
to the presence of a surface or interface and is sometimes also called the surface contribution
of the dipolar anisotropy. If the MAE is expressed in terms of energy densities &, this Kﬁ%’g
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is expressed in terms of an areal density. The dipolar energy contributes also to the MCA of
bulk systems or thick films or wires, if the underlying lattice structure has a twofold symmetry.
For this three-dimensional case more sophisticated summation techniques such as the Ewald
summation method [25] is required to obtain reliable results for equation (30).

The spin-orbit interaction, treated typically by a Pauli-type addition to the Hamiltonian as:

—

Hy = - (E(r) x p) =7 - (VV(r) x p) (31)

provides the essential contribution to the MCA. This Pauli approximation derives naturally from
the Dirac equation, and is normally sufficient for treating relativistic effects in transition-metal
magnets. For a radially symmetric potential we can rewrite equation (31):

_ ldv(r)a-(FXﬁ) 1

r dr r dr

H,, (G-L)=¢€(MG- L, (32)

where L is the angular momentum operator. Since the radial derivative of the potential in a
crystal will be largest in the vicinity of a nucleus, we can expect that the major contribution to
the spin-orbit interaction will come from this region. Furthermore, since for small r the potential
will be Coulomb-like (V' = —%), the radial expectation value of £(r) leads to a material-
dependent spin-orbit coupling constant &, which is roughly proportional to the square of the
nuclear number Z, ¢ o< Z2. In low-dimensional systems the MCA dominates over the shape
anisotropy. The anisotropy depends crucially on the symmetry of the system.

In a solid, where the symmetry of the states is determined by the crystal field, spin-orbit cou-
pling can now introduce orbital moments and magnetocrystalline anisotropies by coupling states
that carry no orbital momentum, e.g. a d,, and a d,=_, orbital, such that the combination form
an orbital moment in z direction. In second-order perturbation theory the expectation value of
the orbital moment operator uBﬁ can be written as:

= (L) = g 37 LA W olt) vy gy (39
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where f is the Fermi function ensuring that the wavefunction ; is occupied and ¢); is unoccu-
pied. In a metal, where several bands are crossing the Fermi level, E¥, it is basically the sum
of all contributions from bands near Fr that determine the orbital moment. Van der Laan [26]
in 1998 has shown, that in the absence of spin-flip terms (i.e. when the majority and minority
band are well separated by the exchange interaction), the spin-orbit coupling changes the total
energy of a system in second-order perturbation theory as:

§

S Ml DM lh) iy 1 = ey e i [l —ml] . (39

- S
€ —E&j dpp

0E =

i3

where 77, is the direction of the spin moment, and +7:/ and /7, are the orbital moment vectors
of the spin-down and spin-up bands, respectively. If the spin-up band is completely filled, we
see that energy change, ¢ F/, is proportional to the size of the orbital moment and the magne-
tocrystalline anisotropy energy (MCA), i.e. the difference of § £ for two different magnetization
directions, will be proportional to the difference in the orbital moments. This relation between
orbital moment anisotropy and MCA was first derived by Bruno [27].

We have discussed that the reduced coordination number in low-dimensional systems favors the
increase of the spin moment. But it also enables the formation of large orbital moments, as can
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be seen from most atoms. Also in the case of the orbital moment the hybridization with some
neighboring orbitals “locks” the electrons in place and quenches the orbital moment. Imagine
a Sc atom with only one d-electron: as an atom, according to Hund’s rules, the orbital moment
will be maximized and antiparallel to the spin moment. But when Sc atoms are assembled in a
square lattice, orbitals with m = —2 and m = +2 will form linear combinations to build d,,,
and d,2_,» orbitals of which the latter one will be occupied. The more these two levels are split
in energy, the more difficult it will be for the electron to “circle” around the atom and, therefore,
to form an orbital moment.

Table 3: Local spin (mg) and orbital (m;) magnetic moments in units of up of Fe, Co and
Ni atoms in bulk materials (n=3), unsupported thin films (n=2), wires (n=1), and as isolated
atoms (n=0). For the bulk crystals the variation of the orbital moment with the direction is
small, but for films and wires the orbital moments parallel (||) and perpendicular (L) to film-
plane or wire-axis are given. The geometry is chosen as if the film or wire would have been
grown epitaxial on a Pt(111) substrate. The column |Kyca| indicates the order of magnitude
of the magnetocrystalline anisotropy energy for different dimensions. The results were obtained
in the generalized gradient approximation to the density functional theory.

Fe Co Ni |KMCA‘
n | mg my Mg my Mg my [me\/}
atom
[ [ [
2.05 0.05 1.59 0.08 0.62 0.05 0.01

3.0/ 007 010|209 020 019|094 0.18 0.14 1.00
322 072 027|232 098 0.77 118 0.84 0.44 | 10.00
4 2 3 3 2 3 -

O, NN W

In Table 3 some representative values of spin and orbital momentum have been collected. These
calculations yield very small orbital moments: 0.05 x, 0.08 15 and 0.05 up for bee Fe, hep Co,
and fcc Ni (and about twice the value if the orbital polarization (OP) proposed by Brooks [28]
is included). It is well-known that the orbital moments are quenched in the bulk due to the
strong hybridization with neighboring atoms. Larger orbital moments are obtained for the (111)
oriented unsupported 3d monolayers. For Fe, Co and Ni the values are 2—3 times larger than
the corresponding bulk values. Thus, in monolayer films the quenching of the orbital moments
is less pronounced due to the reduced hybridization. However, it is important to realize that
these enhanced orbital moments are still an order of magnitude smaller than the corresponding
free atom values, as given by Hund’s second rule (last row in Table 3). Consequently, we
expect for atomic scale magnetic structures such as wires, small clusters and adatoms strong
changes in the orbital moment and, in turn, large values of the magnetocrystalline anisotropy
energy. In practice, these films are deposited on substrates. That will once more quench the
values, especially for the orbital moments. But the spin-polarization of the substrate can lead
to additional large contributions to the magnetocrystalline anisotropy energy in particular for
substrates with large 7, such as Pt or Ir.

Typically, first-principles calculations based on the LSDA or GGA underestimate the orbital
moments. In the literature several methods have been discussed how this deficiency can be
overcome [28, 29, 30]. For example, the orbital moments of the bulk magnets are about twice
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the value if Brooks’ orbital polarization is applied [31, 32]. The effect of OP is much more
drastic in low dimensions [33]. A systematic comparison of LSDA results for Pt supported and
unsupported Fe and Co magnets in various dimensions can be found in the work of Komelj et
al. [34] and Ederer et al. [35].
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Fig. 5: d-level splittings shown in the left figure at a given k-point due to a crystal field in a
square monolayer results in a density of states, shown on the right.

In order to interpret ab initio results on thin films we discuss the case of an unsupported, (100)
oriented d-metal monolayer, in terms of a simple model following Stohr [36]. Assume that the
d-band is substantially exchange split and more than half filled, so that we only have to consider
the (partially filled) minority band. The d orbitals at each atom site experience in the monolayer
plane a crystal field V, that leads to a splitting of these levels: if the surface normal is assumed to
be in z-direction, the d,, and d,2_,» levels will experience a stronger field than the out-of-plane
directed d.,, d,. and d.» orbitals. The crystal field leads to a splitting of 2V for the in-plane
oriented orbitals and 2V, for the out-of-plane oriented ones. In a band-picture, these splittings
can be translated into bandwidths 1/, which will then be twice as large (cf. Figure 5). Normally,
V}; will be larger than V,, so that R = V. /V}; < 1. (If, however, the monolayer is sandwiched
between two slabs of nonmagnetic material the situation could be changed.)

Assume that — like in the case of Co — the minority band is half filled; the d,, and d,>_, states
will split symmetrically by £V} around the Fermi level, the (d.., d,.) and d.- states by £V . In

a band-picture, these splittings will of course depend on the considered % point. Now we can
use perturbation theory equation (33) to calculate the orbital moments. The result [36]

| _Su (32 d b — 45HB 35
B (R+R+1) e =Sy (35)

shows, that only the in-plane orbital moment, m{' depends on the splitting of the out-of-plane
oriented states, while the out-of-plane orbital moment is only quenched by the in-plane crystal
field. This is intuitively clear, since m;- corresponds to an in-plane motion of the electron, i.e.
a hopping between the d,, and d,_,» states that are separated by V. For the calculation of the
magnetocrystalline anisotropy energy we can use equation (34), that gives:
& /3 2

KMCA:EILdCA_EﬁCA:_—(m{|_mlj_):_8—vll _+R—+1_4 . (36)
From this equation we see that, as long as R < 1, an in-plane magnetization is obtained, while
for R > 1 an out-of-plane easy axis is possible. Indeed it is observed that Co-monolayers on a
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weakly interacting substrate (like Cu(001)) have an in-plane easy axis, while a Co layer sand-
wiched in Pt has a perpendicular magnetization. Taking typical values for 3d-metal monolayers,
a spin-orbit coupling strength ¢ ~ 75 meV and bandwidths W ~ 3 eV and W+ ~ 2 eV, one
arrives at orbital moments of m{‘ = 0.285 pup and m;- = 0.200 up and the magnetocrystalline
anisotropy energy per atom of Ky;ca = 1.6 meV, values in the ballpark of the ab initio results
given in Table 3.

2.6 Dzyaloshinskii-Moriya Interaction

Magnets in low-dimensions face frequently a structure inversion asymmetric environment. Con-
sider for example a thin magnetic film on a substrate with the vacuum potential on one side and
the potential to the substrate on the other side. This inversion asymmetry leads to a gradient of
the potential that can be interpreted in first approximation as an electric field normal to the film
surface. In the rest frame of moving electrons, the electric field £ appears by Lorentz transfor-
mation as a magnetic field B x D X E, which interacts then with the spin & of the electron,
giving rise to an additional term in the Hamiltonian, which was already encountered in equation
(31) in the context of spin-orbit coupling. Here, instead of an orbital motion, a linear motion
of an electron with momentum % in an electric field oriented along € is considered. This can
be described by a Hamiltonian H = azé - (k x &.), known as Rashba-term [37]. The strength
described by the Rashba-parameter, a, is determined e.g. by the asymmetry of the wavefunc-
tion due to the asymmetry of the potential or the electric field, respectively, and the spin-orbit
interaction of the electrons involved.

The magnetic interaction between the spin S. at lattice site ¢ and S‘j at lattice site j is caused by
electrons which hop from site 7 to site j and back. Electrons in a magnetic film propagate in an
exchange field +1/27 M (cf. equation (2)), the bands are exchange split and the time-inversion
symmetry is lost. Due to the spin-orbit interaction caused by the Rashba term, electrons experi-
ence a kinetic energy with an additional weak spin-dependent potential, which depends on the
propagation direction p of the electrons. Thus, the motion from site ¢ to j and the back motion
from j to 7 is slightly different. The same is true for time inverse hopping process, the electron
hopping first from site j to ¢ and then back. At first sight, both processes look identical and
indeed both contribute equally to the isotropic Heisenberg exchange equation (15). But due to
the presence of the spin-orbit interaction, the reflection asymmetric environment and the lack
of time inversion symmetry, the interference of both processes does not cancel out completely.
Instead, it gives rise to an additional antisymmetric exchange interaction between these sites,
known as the Dzyaloshinsky-Moriya (DM) [38, 39] interaction

Hpm = Zﬁzg . <§z X §j> ) (37)
i,J

where D is a constant vector, which depends on the symmetry of the system and on the real
space direction given by two sites ¢ and 5. For example, for typical (100) and (110) low index
surfaces of metals, D lies in the film plane and points perpendicular to the direction (¢, 7) con-
necting two surface atoms, if the two surface atoms are placed along high a symmetry line. The
DM interaction arises as the first-order perturbation in the spin-orbit interaction, and might for
this reason be stronger than the magnetocrystalline anisotropy. This chiral interaction tends to
orient the spin S; and .S; orthogonal to each other and to D, destabilizing a uniform ferro- or
antiferromagnetic order and can cause, depending on the strength D, a canting of the magneti-
zation at different atoms, a helical or cycloidal spin-wave. The sign of D defines the chirality



Magnetism in Reduced Dimensions A3.19

of the canting. The DM interaction is practically unknown in metallic bulk magnets, since most
metals crystallize in structures with centro-symmetric symmetries. Surprisingly, after 20 years
of research on low-dimensional magnetism, the magnitude of D has not been established so far
and there is currently active research going on to clarify its relevance for the magnetic order in
nanomagnets.

3 The Rashba effect at metallic surfaces

3.1 Nonmagnetic Surfaces

A surface state can be considered as a particular realization of a two dimensional electron gas.
Since the surface always breaks spatial inversion symmetry, the effective potential which acts
on the surface state will generally have a finite gradient along the surface normal, i.e. there is
an electric field in this direction. The physical manifestation of this field is the workfunction.
Like in the semiconductor heterostructures discussed in the lecture of Dr. Bringer, due to the

Fig. 6: Electrons moving with in-plane wavevectors k; and —k; in the potential gradient of
a surface (indicated on the left). The resulting electric field, E, is seen in the restframe of the
moving electrons as a magnetic field B or —B which couples to the spin of the electron. This
interaction modifies the bandstructure of a spin-degenerate (s, p.)-like surface state as shown
in the lower right picture. The degeneracy is lifted and the electrons at the Fermi level have
spin directions perpendicular to their propagation directions as indicated by the small arrows
(cf. also preceding section).

movement of an electron with wavevector k in the surface plane, this electric field appears
in the rest frame of the electron as a magnetic field which couples to the spin of the electron.
The situation is schematically depicted in Figure 6 for two electrons traveling on the surface in
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opposite directions. For a non-spinpolarized surface state (e.g. on a nonmagnetic surface) this
gives rise to a term in the Hamiltonian

WHQCQJ (VV(r) x p) (38)

Hsoc -

which leads to a k-dependent splitting of the dispersion curves. When we simply use the nearly
free electron gas (NFEG) model and substitute p by the k-vector, for usual workfunctions we
would expect this splitting to be very small, in the order of 10~ eV. This would be far too
small to observe directly with angle resolved photoemission spectroscopy (ARPES). So it came
rather as a surprise, when in 1996 LaShell and coworkers [40] discovered a splitting of the
surface state of the Au(111) surface, which was not only k-dependent, but also in the order of
0.1 eV at the Fermi level. They correctly interpreted this splitting as a spin-orbit coupling effect,
which obviously was influenced by the strong atomic spin-orbit effects in the heavy Au atom.
Spin resolved ARPES experiments finally also analysed the spin distribution of this surface
state [41] and found it to be in quite good agreement with the NFEG model (cf. Figure 6), as it
was also predicted theoretically [42].

While this effect was observed in different studies for the Au(111) surface, on other surfaces
which show a similar Shockley state, e.g. Ag(111) or Cu(111), no such splitting was discovered
experimentally and in calculations [43] based on density functional theory (DFT). From the
calculations it was concluded, that the k£-dependent splitting on Ag(111) is by a factor 20 smaller
than on Au(111) (cf. also Figure 7). This can neither be explained by the difference in atomic
spin-orbit coupling of Au (Z = 79) and Ag (Z = 47) alone, nor by the potential gradients at
the surface. Also the amount of p-character in the sp-surface state is larger for Ag than for Au,
so that in principle spin-orbit effects should be more prominent in silver. So what is responsible
for the size of the effect?

To resolve this issue, we did calculations based on DFT with the full potential linearized aug-
mented planewave method [44] as implemented in the FLEUR code [45]. Our calculations in-
clude spin-orbit coupling (SOC) in a self-consistent manner [46] in the muffin-tin (MT) spheres.
For the present discussion it might be interesting to note, that actually only the spherically sym-
metric part of the potential is included in the calculations, which might seem inconsistent with
the above discussion which claims that the potential gradients at the surface are responsible for
the effect we want to describe. But we will see, that in all considered cases the agreement with
experimental data is fine, suggesting that the theoretical approach includes the dominant terms
leading to the Rashba-type splitting in question.

In the calculations we can choose the region where to include SOC: in specific spheres around
the atoms, i.e. in certain layers of the film, or we can also vary the size of the sphere, where
we want to include spin-orbit coupling. In this way, it is possible to show that a bit less 60%
of the k-dependent splitting of the Au(111) surface state comes from the surface layer and
the contribution in deeper layers decays more or less like the weight of the surface state in
these layers [47]. Moreover, this effect is extremely localized in the core region, where the
radial potential gradient is largest. For Au(111), more that 90% of the effect originate from a
sphere with radius 0.25 a.u. around the nucleus. In this region the potential is almost perfectly
spherically symmetric, so that our above mentioned approximation, to include only the [ = 0
part of the potential, is probably well justified. The potential gradient at the surface enters
actually only indirectly, via the asymmetry of the wavefunction in the core region. In a tight-
binding model, Petersen and Hedegard showed that the size of the Rashba-type splitting is
determined by the product of the atomic spin-orbit coupling parameter and a measure for the
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asymmetry of the wavefunction under consideration [48].

A measure for the asymmetry of the wavefunction of a surface state can be found by analysing
the [-like character of the state, i.e. to determine how much s, p or d character a surface state
shows at a certain k;-point, in our case the T-point. E.g. a surface state of pure p, character is
inversion symmetric and will — in absence of an electric field — show no Rashba-type splitting.
The potential gradient or electric field at the surface will distort the wavefunction, so that some
s or d2 contributions to the surface state will arise. The ratio of /- to [ 4 1-type character of a
surface state (for a given m, e.g. m = 0) will therefore give a measure for the asymmetry of this
state. In the case of Ag(111), we find that the surface state is predominantly of p.-type, with
a small d.> admixture (p : d ratio of 9.5) while in Au the surface state has much stronger d.»
character (p : d = 3.3). The fact that the Au d band lies much higher in energy than the Ag d
band leads to a stronger d character of the Au surface state and thus to larger asymmetry of the
wavefunction [47]. This determines the stronger k-dependent splitting in the Au(111) surface
bandstructure.

Au(111) p:d.=13:4 Ag (111) p,:d > =39:4
1 ML Ag on Au(111) 1 ML Auon Ag(111)
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Fig. 7: Bandstructure of Au(111) (left, full circles) and one monolayer Ag on Au(111) (left,
open circles) as compared to a Ag(111) film (right, full symbols) and a single Au monolayer on
Ag(111) (right, open symbols).

This effect can be further demonstrated, when we compare a single monolayer of Ag on Au(111)
with a Au monolayer on Ag(111). Just from the point of view of the atomic SOC, we would
expect that the Rashba-type splitting of the Au monolayer of Ag(111) is larger than that of the
Ag/Au(111) system, since more than 50% of the effect comes from the surface layer. But since
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the gold d states of the subsurface layers can induce a larger d character of the Ag surface state
in Ag/Au(111) while the Au surface state of Au/Ag(111) has less d character than the one of
pure Au(111), finally the Rashba-type spin-orbit splitting is larger in Ag/Au(111) (cf. Figure 7).
Other examples, how the asymmetry of a surface state influences the strength of the Rashba-
type splitting can be found on lanthanide surfaces (e.g. Lu(0001) [47]), and a particular case
will be presented in subsection 3.3.

3.2 Semimetal Surfaces

Up to now we have discussed examples, where the Rashba-type spin-orbit splitting was in the
order of 10 to 100 meV (up to 120 meV for Au(111)), so that experimentally it is not so easy to
detect in ARPES experiments. Now, we turn to another extreme, where the splitting is so big,
that it was not a-priori clear, whether the two experimentally observed features were spin-split
partners of the same state or two different surface states: the low-index surfaces of Bi. Bismuth
IS a non-magnetic, rather heavy metal (Z = 83) with semimetallic properties, i.e. the Fermi
surface consists only of two tiny pockets, so that the density of states (DOS) at the Fermi level
(FFr) is almost zero. In the surface projected bulk-bandstructure extended gaps are observed
around Er, in which surface states can be localized.

ARPES measurements on the Bi(110) surface [49] showed the existence of two spectroscopic
features in the gap, which could be interpreted as to two surface states. Bismuth has a rhom-
bohedral crystal structure and the (110) surface consists of unreconstructed pseudocubic bilay-
ers [50], where dangling bonds can give rise to surface states. Similarly, on Bi(111) two states
were identified spectroscopically [51]. The (111) surface has closed-packed layers and again
shows a bilayer structure, but without dangling bonds and with a much larger separation of
the bilayers [52]. In both cases of course only the occupied part of the surface bandstructure
could be observed spectroscopically. Using DFT calculations, we have the possibility to access
also the unoccupied part of the spectrum. It can be seen that the observed spectroscopic fea-
tures are actually a Rashba-type spin-split pair of a surface state which forms — at least for the
(110) and (100) surface — a band through the whole surface Brillouin zone [53, 54]. That these
surface state is actually split by spin-orbit coupling can be demonstrated by comparison of a
scalar-relativistic calculation without inclusion of SOC and with the inclusion of SOC [55] (cf.
also left of Figure 8). In this cases, the splittings are very large (in the order of 300 meV) and,
since the surface states extend throughout the Brillouin zone, they are also no longer linear in
k, except in the vicinity of high symmetry points.

It is not only of academic interest, whether two surface states are a spin-split pair or two spin-
degenerate surface states. For example, on the Bi(111) surface the Fermi surface forms a small
hexagon around the T point, which led to speculations about the formation of a charge density
wave on this surface [56]. If the Fermi surface were indeed formed by spin-degenerate surface
states, this would be possible. If, on the other hand, Rashba-type spin-split bands form this part
of the Fermi surface, the electrons at +k; and —k; were of opposite spin and instead of a peak
in the (spin) diagonal part of the susceptibility y, we would expect a large contribution to the
spin off-diagonal part, y*, leading to a modulation of the spin-structure. Since the surface is of
course still nonmagnetic, these modulations have to cancel and a direct observation is difficult.
When magnetic atoms were present at the surface, their interaction would be modified and this
effect could be detected. We will show in a later chapter, that this is actually possible.

Using scanning tunneling microscopy (STM) techniques, consequences of the spin polarization
of the surface states have indeed been observed for another Bi surface [53]. If a scanning



Magnetism in Reduced Dimensions A3.23

tunneling spectrum (STS) is recorded for a dense mesh of positions on a surface, this STS map
can be Fourier transformed for a given energy within this spectrum. The Fourier transformed
(FT) STS map gives then a picture of the energy dispersion in reciprocal space, i.e. a two
dimensional cut through the function e(k ), but with doubled length of the k-vectors, since the
STS maps the scattering between two states of different k but at the same E. In particular, for
E = F¥, this yields an image of the Fermi surface. It is easily seen, that a surface state with
a Fermi surface of a wavevector +kg will give rise to standing waves with 2k which can be
seen in the STS map. This correspondence between FT-STS and Fermi surface has been used
extensively to study the electronic properties of high-temperature superconductors. A Rashba
splitting will not change this picture, since for one spin channel the Fermi vectors are changed
to +kr + Ak, while for the other spin we get +kr — Ak, so that both spin channels will lead to a
contribution of +2kg in the STS map, i.e. the picture is indistinguishable from the one without
Rashba splitting [48]. But if the Fermi surface is more complex, like in the case of Bi(110), the
fact, that the surface states are spin polarized can be seen the FT-STS clearly.
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Fig. 8: Bulk-projected bandstructure of Bi and surface bandstructure of a 22 layer Bi(111)
film with H termination on one side (left) with (full line) and without (broken line) spin-orbit
coupling included in the calculation. A similar calculation with SOC included for a symmetric
20 layer film without H termination is shown on the right.

Consider a simple one-dimensional example: along the line TM in Bi(111) we can see in Fig-
ure 8 (left, broken line) a surface state obtained without inclusion of SOC. This state originates
at —0.3 eV at T, crosses the Fermi level at a wavevector we denote ,, disperses down again and
crosses Fyr once more at k;, and reaches M at —0.22 eV. Surface states at Er can scatter between
k. and k;, and give rise to standing waves with wavelength 2k,, 2k, (k, + k;) and (k, — k), if
the state is spin-degenerate. Now, consider that spin-orbit coupling splits this degeneracy and
gives rise to spin-up states at k£, + Ak and k, — Ak, while spin-down states cross the Fermi
level at k&, — Ak and k, + Ak. In this case, spin conserving scattering events will again give
rise to oscillations with wavelength 2k, 2k, but also (k, + k) £ 2Ak and (k, — k) £ 2Ak.
Here, the effect of spin is clearly visible. On the Bi(110) surface, this effect was also verified
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experimentally in a two dimensional case [53].

The occurrence of spin-polarized surface states of course suggests, that this could be utilized in
some way for spintronic applications. In the case of Ag(111), where the surface state contributes
very little to the density of states at the Fermi level, this might not seem very promising, but
in the case of a semimetal surface, where the DOS at Ey originates almost exclusively from
surface states, this might be more realistic. Alternatively, the surface of a thin film on insulating
or semiconducting substrates could be interesting, since in this case the relative contribution of
the surface state to the conduction electrons is also increased. This works of course only, if
the thin film still supports the same surface state as the semiinfinite crystal, i.e. localized Tamm
states of d-character as they occur on lanthanide (0001) surfaces will be more suitable for very
thin films than the extended s, p-derived Shockley states of the closed packed coinage metal
surfaces.

Another effect, that can disturb the surface states in thin films, is the interaction between the
two surfaces of the film. If, like in Bi, the screening is very weak, surface states at the upper
and lower surface of a symmetric film interact to form even and odd linear combinations. This
of course interferes with the concept of broken inversion symmetry at the surface. On the other
hand, in our theoretical calculations for Au and Ag surfaces, we always used symmetrical films
where a tiny interaction between upper and lower surface cannot be avoided, even in thicker
films. For the bandstructures of Figure 7 we used 23 layer films and especially in the case of
Ag(111), a finite splitting of the surface state parabolas at the " point can be seen. At the first
glance it might seem surprising, that the two different splittings, the even-odd and the Rashba-
type splitting result in only two dispersion curves. Without the interactions that lead to the
splittings, we can think of having two states (spin up, T and down, |) on each surface. The spin-
orbit coupling leads for the spin up states of the upper surface (7,) to the same shift in energy
as for the spin down states of the lower surface (|;) (since the potential gradient is reversed
there) and they will have an energy £*. In the same way of course £(|,) = ¢(T4) = . A
hybridization of 1, and |, leads to energies e + ¢ and ¢~ — &%, respectively, but in the same
way the two downspin states, |, and |; will be shifted to energy values e~ — % and ¢ + &°.
The stronger the interaction across the film, the more each state will be localized at both sides
of the film so that finally the spin-polarization for a given energy and k; gets reduced.

A case, where this scenario has been actually observed in experiment are thin Bi films grown
on a Si substrate [57]. The interaction with the substrate is very weak, since the Bi film is
deposited on a seeding layer of Bi atoms and can adopt (for more than a few bilayers) the
structure of Bi(111). Angle resolved photoemission has shown that near the zone center the
electronic structure of these Bi films is not so different from what has been observed on single
crystal surfaces. But when the k; vector approaches the zone boundary at M, the crossing
of the two spin-split states is no longer observed. Instead, quantum well states (QWS) are
formed when the surface state gets near to the bulk continuum at M [57]. The energy levels of
these states agree nicely with those obtained by the calculation of symmetric films of the same
thickness (cf. right of Figure 8). As the surface state character is lost, also the spin-polarization
of these states vanishes. The very bad screening of Bi makes this QWS disappear only for very
thick films (more than 40 bilayers). Therefore, when we simulate Bi single crystal surfaces, we
have to terminate one side of the film with H atoms to saturate the dangling bonds and explicitly
remove the inversion symmetry of the film, even if it is 22 layers thick.
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3.3 Magnetic Surfaces

Let us finally consider the case of a surface of a magnetic metal, like Gd(0001). On this closed
packed surface a bulk projected bandgap around T contains a surface state of d,- character, like
it can be found also on other lanthanide surfaces. Exchange interaction splits this surface state
into an occupied majority spin state and an unoccupied minority state. This splitting is mainly
controlled by the 4 f electrons of Gd and amounts to about 0.8 eV, which is large as compared to
spin-orbit effects in this system. No matter how SOC affects the electrons of the surface state,
their spin will remain more or less parallel to the exchange field, which is oriented in plane in
the directions of nearest neighbor atoms by the magnetic anisotropy.

An electron traveling on the surface in a direction perpendicular to its spin quantization axis,
will experience the potential gradient at the surface as a magnetic field parallel to its spin. There-
fore, a magnetic coupling can arise and the dispersion curves will split more or less similar to
what is observed on a nonmagnetic surface. If, on the other hand, the propagation direction of
the electron is parallel to its spin quantization axis, the field arising from SOC cannot couple
to the electron’s spin and no Rashba-like splitting can be observed. Schematically, this situa-
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Fig. 9: (a): Rashba splitting on a non-magnetic surface: the top panel shows the Fermi surface
and the spin-polarization of the states at the Fermi level. In the middle and lower panel the
bandstructures along two orthogonal directions in reciprocal space are shown. (b): The same
relations as in (a) are shown, but now for the case where the spin-quantization axis of the
electrons has been aligned in a particular direction. For electrons propagating in this direction,
the Rashba splitting vanishes. (c): Effect of an additional exchange splitting on the situation as
described in (b). (d): Surface bandstructure arising from the calculation of a symmetric film,
where the surface states from the lower surface are shown in red.

tion is shown in Figure 9. In contrast to the surface state on the nonmagnetic surface, where
the spin of the electron is always oriented perpendicular to the propagation direction and the
surface normal, e,, (with some deviation, depending on the shape of the potential [42]), on
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the spin-polarized surface, the spins are more or less collinear. This changes the shape of the
Fermi surface significantly, especially if exchange splitting is considered (Figure 9 (c)). If the
exchange splitting is large, this leads to a Fermi surface consisting of a single circle shifted
away from the zone center. The consequences for the bandstructure are simple: along a certain
direction in reciprocal space SOC will have no particular effect. In a direction orthogonal to this
one, the dispersion curves for majority and minority spin will be shifted in opposite directions.
For the eigenvalues this results in an expression

eyn(k) =e(k) £ IM +ag(k x e.) - M (39)

where M = MM is the magnetization and 7 represents the exchange splitting of the bands.
Of course in a calculation of a symmetric film, again on the lower surface (—e.) the directions
of the spin-orbit induced shifts will be exactly opposite to the shifts on the upper surface, so that
in total a picture as shown in Figure 9 (d) is obtained. From this picture the two splittings for
the spin-up and the spin-down surface state can be determined directly as Ae(k) = e(k, M) —
e(k, —M).

Experimentally, for a single crystal surface, it is possible to measure with ARPES two spectra
of the same surface, but rotated by 180 degrees. In the case of an in-plane anisotropy, as for
Gd(0001), this rotation reverses the spin and leads, therefore, also to a picture as Figure 9 (d).
A comparison of these two spectra allowed to determine the Rashba splitting in Gd(0001),
even though its magnitude is rather small [58]. A particular advantage of magnetic surfaces is,
that the measurements allow the determination of the sign of the Rashba parameter, ar, even
without the need of spin-analysis via a Mott detector.

Modification of the Gd surface also alters the characteristics of the <''~face state: if (atomic)
oxygen is adsorbed in the surface, the surface state shifts down in e 3y and both, minority
and majority spin states become occupied. Moreover, the dispersion of the surface state changes
from almost flat on Gd(0001) to parabolic for O/Gd(0001). Both surface states were observed
experimentally, and DFT calculations show, that these states are actually interface states resid-
ing between the topmost Gd/O layer and the underlying Gd bulk [58].
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Fig. 10: Left: Magnetization direction on the Gd(0001) surface indicated by the red arrow and
surface Brillouin zone and labeling of the high symmetry points. Right: Rashba-type splitting
of the surface state of Gd(0001) and O/Gd(0001) in the directions 'K, and T'Mj;.
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Let us now focus on the Rashba-type splitting on O/Gd(0001). In Figure 10 we plotted the
splitting as a function of k; for the directions I'M; and T'K, as indicated in the Figure. Since
the magnetization is directed towards nearest neighbours (a-direction), the largest effects on
the surface state dispersion should be observed in I'M; direction while no splitting should be
visible in the direction TK,. A closer look at Figure 10 reveals, that the splitting, A« is indeed
smaller in TK; than in TM,. Furthermore, we observe that Ac for the majority spin state
(Sy) is not only of opposite sign as compared to Ae for the minority state (S,), but also their
absolute values differ. This is also observed experimentally, and can be explained again by the
different positions of the states in the bulk-projected bandgap and the different asymmetry of
the wavefunctions. One should note here, that also the effective masses of the S; and S, states
differ and this shows, that spin is not the only difference of these states.

Even more drastic is the difference of the S; surface state of O/Gd(0001) to the S; state of
Gd(0001). We can see from the right of Figure 10 that not only the magnitude of the splitting is
a factor 3 to 4 smaller, even the sign is different. Since this reversal of sign cannot be attributed
to the spin, it must result from a different admixture of p.-character to the d.» surface state. A
reversal of the gradient of the wavefunction at the position of the Gd nucleus can be interpreted
as the result of hybridization with p_.-type wavefunctions of different signs. In some sense we
can say, that we see the sign of the wavefunction here in the sign of the Rashba-parameter.
Spin-orbit coupling effects on surfaces can be very diverse and recently this field expanded in
various directions: Studies of the spin-orbit splitting of surface states in Bi or Pb surface alloys
have shown more complex spin-orientation patterns than what is expected from the Rashba-
model [59]. In thin films of Bi on Si(111) substrates, a gradual decrease of the Rashba-type
spin splitting has been observed as the orbitals change their character from surface states to
quantum well states as a function of momentum [60]. On the other hand, in Pb films on
Si(111) even quantum well states can be spin split due to their stronger interaction with the
substrate [61]. Thin Bi films turn out to be quite attractive, since Bi can undergo a transition
from its semimetallic to a semiconducting state at low thickness [62]. Edge states of these semi-
conducting films can provide a non-trivial band topology that can support the so called quantum
spin-Hall effect. A two-dimensional variant of this effect has been recently confirmed on BiSb
alloy surfaces [63].

4 Ultrathin Films

The transition-metal monolayers on noble-metal substrates are the classical systems exhibit-
ing two-dimensional (2D) magnetism. Because of the reduced coordination number of nearest
neighbor atoms in a monolayer film the d-band width in two-dimensions is considerably smaller
and correspondingly the LDOS at the Fermi energy is considerably larger than in the bulk sit-
uation. Thus the magnetic instability should occur for a much wider variety of transition-metal
elements. Following this line of argument it is clear that the strength of the d—d hybridization
between monolayer and substrate is an additional parameter which controls the d-band width
of the monolayer. For instance large band-gap material, e.g. MgO(100), as substrate allows the
formation of two-dimensional monolayer bands within the band gap of the substrate material.
In this case the impact on the magnetization of the monolayer due to the substrate is expected to
be small. The same is true for noble-metal substrates, which have d bands well below the Fermi
energy. The width of the monolayer d band is not significantly broadened by the monolayer-
substrate d—d interaction, and magnetism is restricted to the monolayer. Increasing the d—d
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Table 4: Local magnetic moments in ug/atom for 3d transition—-metal atoms as ferromag-
netic (F) and antiferromagnetic (AF) 3d monolayers (ML) on Ag(001) [64], Pd(001) [65],
W(110) and on Cu(001) [2, 66]; compared with results for 3d monolayers as interlayers (IL)
in Cu(001) [2], unsupported (001) monolayers (UL) in the lattice constant of Cu(111) and
Ag(001) [67], and with results for ferromagnetic 3d monolayers on Cu(111) and Ag(111) [68].
“—”" indicates that no calculation was performed for this system. “0” indicates that the cal-
culated moment was smaller than the numerical accuracy estimated to be about 0.02 pg/atom.
“?”” indicates a system, for which the calculation was not finished up to self-consistency, but
result is approximately correct.

Ti \V/ Cr Mn Fe Co Ni

Ag ML onAg(001) F 034 209 3.78 4.04 3.01 2.03 0.65
AF 0 208 357 411 306 ? 0

UL -Ag(00l) F 172 2.87 450 432 329 220 1.02
AF 0 259 409 432 332 210 0

ML onAg(11l) F 0  1.39 343 391 295 1.93 051

Pd ML onPd(001) F 0 051 3.87 411 319 212 0.89
AF 0 1.39 346 4.05 320 199 0.59

W ML onW(01) F  — 000 — 297 237 114 0.0
AF  — 000 252 332 — — 0.0
Cu ML onCu(00l) F — 0 0 297 261 176 0.33
AF  — 0 252 292 235 ? O
IL inCu@©0l) F — 0 0 201 239 151 0
AF - 0 184 215 — —  —
ML onCu(lll) F - 0 0 3.05 269 —
UL -Cu(lll) F - 0 0 306 275 — —

hybridization by choosing appropriate nonmagnetic transition metal substrates, e.g. Pd(100) or
W(110), will lead to a considerable broadening of the monolayer bands and introduce a signif-
icant spin-polarization of the substrate until we have changed from the two-dimensional limit
to the semi-infinite regime. Choosing a magnetic substrate an additional complexity arises
due to the competition of the magnetic coupling in the monolayer and between monolayer and
substrate.
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Fig. 11: Local magnetic moments as calculated for ferromagnetic (left figure) 3d metal mono-
layers on Ag(100) [64] (dots), Pd(100) [65] (squares), and Cu(001) [2] (triangles), and (right
figure) 3d, 4d [69], and 5d [70] monolayers on Ag(001) (dots) and Ag(111) [68] (triangles)

4.1 (100) Oriented Monolayers on Nonmagnetic Substrates
Ferromagnetic Monolayers

A systematic investigation of the magnetism of all possible 3d, 4d, and 5d transition-metals
monolayers on Ag(001) are collected in Fig. 11 and in Table 4. One finds that all 3d metal
monolayers (Ti, V, Cr, Mn, Fe, Co, Ni) on Ag(001) substrate show ferromagnetic solutions. Tc,
Ru, and Rh are ferromagnetic among the 4d-metals, and Os and Ir are ferromagnetic among
the 5d-metals on Ag(001). The local magnetic moments are partly very large, not only for the
3d monolayers, but surprisingly also for the 4d and 5d ones. In the 3d series the overall trend
of the local moments follows Hund’s first rule. The largest local moment of about 4 g was
found for Mn and from Mn to Ni the magnetic moment decreases in steps of 1 ug. The latter
is a consequence of the strong ferromagnetism in these monolayers. The magnetic moments of
Ti, V, and Cr monolayers show a pronounced dependence on the substrate: Ti is magnetic on
Ag, but nonmagnetic on Pd; the magnetic moment of V is reduced by more than 1.5 ug when
changing the substrate from Ag to Pd; and for Cr the magnetic moment changes from 3.8 up
as an adlayer on Ag or Pd to zero as an adlayer on Cu. Although not as dramatic, the reduction
is also visible for Mn. We attribute the drastic reductions of the monolayer moments to the
reduction of the lattice constants in the sequence Ag to Pd to Cu.

When comparing the results of the local moments between 3d, 4d, and 5d monolayers on
Ag(001) an interesting trend is observed: The element with the largest magnetic moment among
each transition metal series is shifted from Mn to Ru (isoelectronic to Fe) and at last to Ir (iso-
electronic to Co), respectively. Following these trends we do not expect ferromagnetism for
any other 4d or 5d metal on noble metal (001) substrates, and indeed Mo and Re remained
nonmagnetic. The overall picture of monolayers on Ag and Au is the same, but the different
substrate interactions cause Tc and Os on Au to be nonmagnetic and lead to a slightly larger
moment for Rh. Pd and Pt are predicted to be nonmagnetic. With the exception of Ru, for which
a rather small magnetic moment of 0.2 was calculated, no monolayer magnetism was found
for 4d metals on Pd(100). Investigations [71] including the spin-orbit interaction have shown
that the spin-orbit interactions reduces significantly the magnetic spin moment of the 5d metal



A3.30 Stefan Blugel

— ey 1 . T T < ey
[ ospin + S leyar Woon Ag J siosein + % loyer o Cron Ag Q4 spin & iryelr Mrn on ﬁlg ‘é

L+
T

1005 {States/ev}
fa] - ]
(=] - [ %]
L}"a__—:t-*

.......

LDOS (States/eV)

_ :
L ‘l .
I spin - U 1=3F spin - !

~8 -8 w4 w3 0 2 4 - - -4 =Z D z 4 -8B -8 —& —Z a 2 4
Energy (v} Erergy [e¥) Erergy (&)

(=
1
SR IOVY SR N TR R S - T S SO ST ST S
i
i

f
"'3: spin — \1

Fig. 12: Local density of states (LDOS) of ferromagnetic 3d metal monolayers on Ag(100).
The Fermi energy defines the origin of the energy scale, separating occupied (at negative ener-
gies) from unoccupied states (at positive energies). Majority (minority) states are indicated by
positive (negative) values of LDOS.

monolayers and depending on the interlayer relaxation the spin moment might be suppressed.

Antiferromagnetic Monolayers

It is by no means clear whether the ferromagnetic state is actually the magnetic ground state.
Looking at the LDOS of the 3d monolayers in Fig. 12 and considering the analysis of the anti-
ferromagnetic susceptibility (8) we expect an antiferromagnetic phase for Cr and possibly also
for V and Mn monolayers. In reality, various antiferromagnetic states as well as non-collinear
spin configurations could be anticipated. Studying an Heisenberg model (15) for a square lat-
tice as formed by the (001) monolayers up to the second nearest-neighbor interaction (J;, J5)
the situation becomes relatively simple. As long as the nearest-neighbor interaction is the dom-
inating one, there are only two phases to be considered: the ferromagnetic p(1 x 1) structure
(J1 > 0) discussed in the previous section and the antiferromagnetic c¢(2 x 2) superstructure
(J1 < 0, a checkerboard arrangement of up and down spins with moments of identical size on
both sublattices). The c¢(2 x 2) structure corresponds to the M-point in the 2DBZ of the square
lattice. If the next-nearest neighbor interaction is antiferromagnetic, J, < 0, and sufficiently
strong, |Ji| < 2|Js|, then the magnetic structure with a 2D QH vector of the X-point in the
2DBZ, corresponding an antiferromagnetic p(2 x 1) or p(1 x 2) structure (ferromagnetic rows
of atoms along the [100] or [010] direction coupling antiferromagnetically from row to row)
becomes the magnetic ground state.

Figure 13 shows the local moments for the ferromagnetic and c(2 x 2) antiferromagnetic phase
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Fig. 13: Left figure: Local magnetic moments of 3d monolayers on Cu(100) [2] and
Ag(100) [64] calculated for the p(1 x 1) ferro— (solid circles connected by dashed line) and
the c(2x2) antiferromagnetic configuration (open circles connected by solid line). Right figure:
Total energy difference AE = Eary — Erpy per 3d atom between the ¢(2x2) antiferromagnetic
and p(1x1) ferromagnetic phase for 3d monolayers on Cu(100) (triangle connected by full line)
and Ag(001) (solid circles connected by dashed line). AE > 0 (< 0) means, the ferromagnetic
(antiferromagnetic) configuration is the most stable one. *““?”” indicates an result which is not
fully converged

of 3d monolayers on Cu(001). It becomes evident that, for many systems (see also Table 4)
both configurations exist with moments of similar values. Depending on the inplane lattice con-
stant, differences in the local moments for the two magnetic phases develop for earlier transition
metals, e.g. for Cr on Cu(001,) for V on Pd(001) or for Ti on Ag(001). Figure 13 shows also
the energy differences AE = Eary — Erp per atom between the ¢(2 x 2) antiferromagnetic
and the ferromagnetic configuration for 3d metal monolayers on Cu(001) and Ag(001). A clear
trend emerges: The Ni, Co, and Fe overlayers (AE > 0) prefer the ferromagnetic configuration
and the Mn, Cr, and V ones favor the antiferromagnetic one. From the strong similarities of the
monolayer trends for these two substrates we conclude, that this is a general trend: Fe, Co, and
Ni favor the p(1x1) ferromagnetism on the (001) surfaces of Pd, Pt and the noble metals Cu, Ag
and Au [72] whereas V, Cr, and Mn monolayers prefer the c(2 x 2) antiferromagnetic configu-
ration. The same trend was recently found for monolayers on W(110) [73], and is expected for
Al substrates although V and Ni might then be nonmagnetic. Since AE ~ 852J;, AFE reflects
basically the change of .J; as function of the band filling (number of d electrons) or how Eg
moves through the LDOS in Fig. 12. For Mn on Ag(001), where AE or .Jy, respectively, is
relatively small, the .J’s between more distant pairs may determine the picture. We investigated
by total energy calculations the stability of the possible p(2 x 1) structure and found that the
c(2 x 2) structure is indeed the magnetic ground state.

The ¢(2 x 2) antiferromagnetic phase was first predicted by theory. After the prediction several
experiments indicated that the c(2 x 2) state may indeed exist: no ferromagnetic long range
order was found at low temperatures for a V. monolayer on Ag(100) [74], but a local exchange
splitting was found for V, Cr, and Mn monolayers on Ag(100) [75]. More than 10 years after the
theoretical prediction a direct proof of the c(2 x 2) antiferromagnetic state became for the first
time possible by using the spin-polarized scanning tunneling microscopy in the constant-current
mode [76, 77]. The experiments were carried out for a Mn monolayer on W(110).
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4.2 (111) Oriented Monolayers on Nonmagnetic Substrates
Ferromagnetic Monolayers

The (0001) surface of an hcp crystal and the (111) surface of a fcc crystal establish a triangular
lattice. Compared to the (100) surface the coordination number changes from 4 to 6, and the
symmetry changes from fourfold to threefold or sixfold, respectively. Moreover, the differences
in the magnetic properties between films on a square lattice and on a triangular lattice gives an
estimate of the importance of the pseudomorphic growth condition for the magnetism of the
films.

Figure 11 exhibits the general trend that the magnetic moments of the sixfold coordinated mono-
layers on Ag(111) are smaller in magnitude than those of the fourfold coordinated ones on
Ag(001). On the Ag(111) surface we found magnetism for all 3d metals with the exception of
Ti, which was very small anyway. There is nearly no difference between the monolayer mo-
ments of Mn, Fe, Co, and Ni on the differently oriented Ag substrates. A comparatively larger
reduction of the magnetic moments is found at the beginning of the 3d series where the wave-
function is more extended than at the end of the series. Thus changing the coordination number
from 4 to 6 changes the local moments not significantly. One consequence of this result is that
for monolayers which do not grow pseudomorphically on any substrate, but keep an average
distance between monolayer atoms similar to the pseudomorphic films, no dramatic difference
in the formation of large local moments are expected.

With the exception of Ru (1.23 u), and Rh (0.67 i) and a tiny moment for Ir (0.05 ) among
the 5d metals, no ferromagnetism was found for any other 4d and 5d monolayers on Ag(111).
For the 4d metal monolayers Ru and Rh, the moments are reduced to about 70% of the (001)
values and for the 54 metal Ir only a tiny magnetic moment of 0.05 i, about 15% of the (001)
value, remains. Obviously the degree of the reduction of the magnetic moments due to the
increase of the hybridization with the increase of the coordination number from 4 to 6, follows
simply the increasing degree of delocalization of the d wavefunction when moving from the 3d
to the 4d and 5d transition—metal wavefunctions.

Monolayers with Complex Spin Structures

Antiferromagnetic interactions on a triangular lattice are the origin of frustrated spin systems. In
recent years the epitaxial growth of such ultra-thin films has been studied intensively by various
experimental techniques. In particular, pseudo-hexagonal c(8 x 2)Mn films on Cu(100) [78],
Mn films on the (111) surfaces of fcc Pd [79], Ir [80], Cu [81, 82, 83], and MgO [84] and on
the (0001) surface of Ru [85] and Co [86] have been prepared and analyzed. But also other
ultra-thin hexagonal films, e.g. Cr and V on Pt(111) and Ru(0001) [87, 88, 89], have been
investigated.

To obtain an overview of all relevant spin-structures we develop first a zero-temperature phase
diagram in the context of the Heisenberg model. As discussed in Sect. 2.3 the magnetic ground
states are SSDWSs, most likely with a commensurate propagation vector g; located at the high-
symmetry points in the first 2DBZ of a 2D Bravais lattice. For the 2DBZ of the triangular
(hexagonal) lattice, displayed in Fig. 14 (Left), the high-symmetry points are the corner points
T, K, and M of the irreducible wedge of the 2DBZ (12DBZ). The T'-point corresponds to the
ferromagnetic solution. The K-point corresponds to a 120° Néel state (Fig. 14 (Center)), a 2D
coplanar spin structure with three atoms in a (v/3 x v/3) R30° unit cell for which the relative
angle between the spins at the different sites is always 120°. The M-point corresponds to row-
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Fig. 14: (Color) (Left:) The hexagon shows the first BZ of the 2D hexagonal Bravais lattice. The
gray-shaded area indicates the irreducible part. (Center:) The RW-AFM structure. (Right:) the
coplanar non-collinear Néel (120°) structure. Indicated are the corresponding two- and three-
atom unit cells and the continous paths, which connect the corresponding magnetic structure to
the FM state

1 Ferromagnetic
2 Néel State
3 Row-wise AFM

4 Spin-Spiral (0,k,)

Fig. 15. Zero temperature
phase-diagram in the (Ji, J5)
space for the triangular lattice
indicating the regions of the
four possible magnetic states

wise antiferromagnetic (RW-AFM) configuration (Fig. 14 (Right)), which can be described by a
rectangular unit cell with two antiferromagnetically aligned atoms. Magnetic ground states with
incommensurate gj-vectors are also possible preferentially with gj-vectors from the connecting
high-symmetry lines M-I"-K-M.

Along the line M-T-K-M we investigated the energetics within the Heisenberg model up the
second nearest-neighbor interaction, i.e. including the exchange constants .J;, J,. The results are
summarized in Fig. 15 in terms of a zero-temperature phase diagram. Depending on the signs
and values of J;, and .J; four kinds of possible magnetic ground states exist: FM, RW-AFM,
120°, and the SSDW. If .J; is zero or positive (ferromagnetic) than there are only two possible
magnetic ground states, determined by the sign of .J;, the FM and the Néel state. But small
values of .J; are already sufficient to change the magnetic ground state and an infinite number
of magnetic states becomes possible, the RW-AFM state or the incommensurable SSDW at any
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possible wave-vector g at the high-symmetry line T-M. Extending the model by including also
J3, @ magnetic state with a g at any high-symmetry line can become ground state.
Since the J’s are rapidly varying functions of the number of d electrons, ab-initio calculations
are carried out to determine the element specific ground states. Since the calculations are very
time comsuming, the full overview has been worked out only for unsupported, free-standing
monolayers (UML). Fig. 16 shows for the UMLs with the Cu lattice constant the total energy
E(@Qy) and the magnetic moments M (@) calculated for a discrete set of the spin-spiral Q)
vectors along the high-symmetry lines. Among all the SSDWs calculated, the high-symmetry
points have the lowest energies: the 120° Néel state (K-point) for Cr(111), the RW-AFM state
(M-point) for Mn(111), and the FM state (T-point) for Fe(111). For Fe and Mn, the M (@) are
nearly a constant, but the Cr moments change drastically, as no ferromagnetic solution could be
found for Cr(111). One more interesting observation is the local minimum of E(@||) for Mn on
the line I'-K, which is only 21 meV higher in energy than the RW-AFM state. We expect that a
small change in the d-band filling, e.g. due to alloying with Fe, may change the energetics and
an incommensurate SSDW may become the magnetic ground state.
For Mn, the lowest energy magnetic state found so far is the RW-AFM state, which corresponds
to the commensurate SSDW state with one single G -vector at the M-point of the 2DBZ, and the
RW-AFM is also called single-QH (1Q) state. In the 2DBZ there are three M-points correspond-
ing to the three possible directions of the long axis of the RW-AFM unit cell on a triangular
lattice. They are equivalent in symmetry but are different to each other with (J;-vectors, @l(lk),
for £k = 1,2,3. Within the Heisenberg model the energy of each SSDW denoted by one of
the three wave vectors @ﬁk) or any SSDW being an orthogonalized linear combination of those
are degenerate. Higher order spin interactions (17) and (18) may lift this degeneracy and a so-
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Fig. 17. (Color) An image of the magnetic 3Q-
structure, with spins pointing in all three directions of
the spin-space. Note that, due to the neglect of the
spin-orbit interaction only the relative orientation of
the moments is specified

called triple-QH (3Q)-state, may become lower in energy. The 3Q-state is a three-dimensional
non-collinear spin-structure on a 2D lattice (see Fig. 17) with four chemically identical atoms
per surface unit-cell, where the relative angle between all nearest-neighbor spins is given by
the tetrahedron angle of 109.47°. The 3Q-state is formed as a linear combination of the three
RW-AFM (1Q) structures orthogonal in spin-space, each having one of the three (J*’-vectors

of the M-points:
3
— 1 3(k) B
W+ ) = m() x —= 3¢ g®), (40)
V3 —

where the e*) are orthogonal unit vectors in spin space. We see that in the nearest-neigbhor
approximation to the higher order exchange contributions the sign of K; and B; determine the
sign of the energy difference AE = E3g — Eig = 16/35%(2K, + B;) and thus whether the
3Q or the 1Q state becomes the magnetic ground state. From the ab-initio calculations for the
Mn UML in the geometry of Cu(111) we [3] found that the 3Q-state is 15 meV/atom lower in
energy than the 1Q-state.

Calculations including the Cu(111) substrate show that the energy differences between different
magnetic states change due to the present of the substrate, but the magnetic ground state remains
unaltered: Cr/Cu(111) exhibits the 120° Néel state (2.35 ug), Mn/Cu(111) the 3Q-structure
(2.74 ug), which is 17 meV lower in energy than the 1Q-state (3.00 i), and Fe/Cu(111) is
ferromagnetic (2.63 ug). On the Ag(111) substrate [90] the overall picture is the same, but
two differences were noticed: V/Ag(111) is magnetic (2.19 ug) and exhibits as Cr/Ag(111)
(3.65 up) the 120° Néel state and the magnetic gound state of Mn/Ag(111) is the RW-AFM
state (3.91 ug) and not the 3Q-state (3.88 up). Fe/Ag(111) is ferromagnetic (3.02 ug). We
believe that the complex spin-structures presented here, can be resolved using the spin-polarized
scanning tunneling microscope in the constant-current mode [91, 90].

4.3 Magneto-Interlayer Relaxation

In order to give the reader an impression (i) how strongly the formation of large monolayer
moments may affect the interlayer relaxation and (ii) what is the influence of the magnetic order
on the interlayer distance, total energy calculations as function of the interlayer distances are
presented for two selected systems: Mn/Ag(001), and Mn/Cu(001). Prior to these calculations
we determined the in-plane lattice constants which are taken to be the bulk lattice constants of
the substrate; we found a value of a$" = 6.65 a.u. for Cuand a; = 7.58 a.u. for Ag. Clearly, the
Mn monolayers show the largest magnetic moments on any substrate and the magneto-volume
effects should be most substantial.
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Fig. 18: Total energies as function of the interlayer relaxation for nonmagnetic (open dia-
monds), ferromagnetic (solid diamonds), and c(2x2) antiferromagnetic (solid circles) Mn mono-
layers on Cu(001) and Ag(001). The energy of the nonmagnetic monolayer at 0% relaxation
was chosen as the origin of the total energy scale. The interlayer relaxation is given in relative
units with respect to the interlayer distance of the substrate. The vertical arrows indicate the
minimum energy interlayer relaxation

Fig. 18 shows the total energy as function of the interlayer distance for a Mn monolayer on
Cu(001) and Ag(100) for three different magnetic states: nonmagnetic, ferromagnetic and c(2x
2) antiferromagnetic. We find, as already discussed in Sect. 4.1 that the nonmagnetic solution
is the highest in energy and the antiferromagnetic one is the lowest energy magnetic state.
Second, we find a substantial change of the minimum energy interlayer distances with change
of the magnetic state. On Cu(100) the most contracted minimum energy distance was found for
the nonmagnetic solution with Azy =1.39%. For the ferromagnetic state a relaxation of Azp =
4.02% and for the antiferromagnetic state a relaxation of Azxr = 5.41% was determined. We
find that the effect of the long range magnetic ground state on the relaxation is equally important
as the formation of moments itself: the formation of a magnetic moment expands the interlayer
distance by about 2.6% and the change in the magnetic state changes the interlayer distance
by 1.4%. This coincides with the energy differences between the ferromagnetic state and the
nonmagnetic state which is comparable to the energy difference between the antiferromagnetic
state and the ferromagnetic one.

On Ag(001), the interlayer relaxations for the nonmagnetic, ferromagnetic, and antiferromag-
netic Mn monolayers are determined to Azy =—13.4%, Azp =—6.75%, and Azarp = —5.94%,
respectively. The lattice constants of Ag is 14% larger than the lattice constant of Cu. Conse-
quently the Mn atoms relax inwards on these substrates. Due to the large Mn moments, around
4 13 on these substrates (recall the moment of Mn on Cu is slightly below 3 ), the magneto-
volume effect is very large. The ferromagnetic Mn monolayers experience a large expansion of
their minimum energy interlayer distance of about 7%, much larger than for Cu and the mag-
netic configuration modifies this expansion by an other 1% to 2%. The impact of the magnetic
order on the interlayer distance is within about 2%, but the magneto—-volume effect due to the
formation of large magnetic moments is much larger for Mn on Ag than for Mn on Cu. This
is in line with the arguments based on energy differences. The energy difference between the
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antiferromagnetic state and the ferromagnetic state is for all Mn systems in the same ballpark
of about 300 meV/Mn atom (cf. Table 1), while the formation energy of local moments is at
large difference: about 200 meV for Mn on Cu but 1300 meV for Mn on Ag. This explains the
large difference in the magneto-volume effects between Mn on Cu and Mn on Ag. In all cases
the relaxations stabilize the ferromagnetic and antiferromagnetic phases, respectively.
Concluding, the atomic volume depends on the magnetism, mostly on the size of the mo-
ment and to a smaller extent on the magnetic state. An extreme example of this is the ex-
perimentally observed unusually large atomic buckling of the ¢(2 x 2)MnCu/Cu(001) [92] and
c(2 x 2)MnNi/Ni(001) [92] surface alloys. In these alloys a buckling of the surface atoms of
0.30 A (MnCu) [92] and 0.25 A (MnNi) [92] was found. Although the atomic radii of Pd and Au
are much larger than for Mn, the buckling of the c(2x2)CuPd/Cu(001) and c¢(2x2)CuAu/Cu(001)
atoms was observed to just 0.02 A[93] and 0.10 A[94], respectively. It was shown that this buck-
ling was a consequence of the magnetovolume effect, due to the large moments of Mn (3.75 )
in Cu [95] and Ni (3.55 ug) [96].

4.4 Orbital Moment and Magnetic Anisotropy
Trends in Unsupported (100) Monolayers

The orbital magnetic moments (1) and the magnetocrystalline anisotropy (MCA) are fairly
small quantities as compared to spin moments and exchange energies. This holds at least for 3d
transition metals. These quantities depend on fine details of the electronic structure which alters
with lattice constant, film thickness, choice of substrate and surface orientation. Although it is
important to know the fact values of the m,; and the MCA for particular systems, in this sub-
section we try to provide insight and intuition into the behavior of these quantities by studying
the chemical trend of these properties across the transition-metal series. We focus on (100) ori-
ented unsupported 3d, 4d and 5d transition-metal monolayers in the lattice constant of Ag(100)
(ap/v/2 = 5.459 a.u.). In order to proceed with a fine scale analysis of these properties as func-
tion of the electronic structure or the band filling, respectively, the relativistic density functional
calculations are carried out for films of hypothetical atoms with non-integer nuclear numbers.
The rational behind this modus operandi is the idea that due to the required charge neutrality,
the nuclear number and the number of electrons are the same. Thus, a fine change of the nuclear
number is followed by a fine change of the number of electrons, caused by the adjustment of
the Fermi energy. This facilitates a fine scan of m, and the MCA as function of the band filling
across the transition-metal series. For example, for the 3d monolayers we have varied the nu-
clear number Z from the beginning to the end of the transition-metal series, e.g. from Z = 21
with Ny, = 3 valence electrons till Cu, Z = 29 with Ny, = 11 valence electrons, in steps of
approximately AZ = 0.10 ~ 0.15.

The results are summarized in Figure 19. For each Z, two self-consistent relativistic ab initio
calculations have been carried out, one with the magnetization direction perpendicular to the
film plane, m =1, and one with the magnetization parallel to the film plane along the [100]
direction, m =—. As results one obtains the orientation dependent spin moments, m(7) and
ms(—), orbital moments, m,(T) and m;(—), and electronic total energies, £(1) and E(—).
Here we focus on the ferromagnetic phase.

The magnetic spin moments exhibited in Figure 19(a), follow the trend discussed in Sub-
sect. 4.1: The 3d monolayers behave according to Hund’s first rule with a maximum moment
of more than 4 g in the center of the series. Also 4d- and 5d-metal monolayers are magnetic
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Fig. 19: Local magnetic spin moments (a) and orbital moments (b), magnetocrystalline
anisotropy constant Kyica = AFnca calculated as energy difference between between two
magnetization directions, the magnetization in the film plane (—) and out-of the film plane (7),
calculated for ferromagnetic, freestanding, unsupported 3d- (squares) (c), 4d- (triangles) (d),
and 5d- (diamonds) (e) metal monolayers (UML) in the (100) surface orientation and in the
lateral lattice constant of the Ag(100) substrate [97]. In (b) the average orbital moments be-
tween those of the out-of-plane, m;, and inplane, m,_., magnetization directions are shown.
The difference of the spin moments on the magnetization direction is difficult to distinguish on
the scale of (a) and is not shown. Positive energies in figures (c)—(e) means that the out-of-plane
magnetization is energetically preferred.

for elements between Mo till close to Pd and between W till close to Pt. The magnetic mo-
ments decrease from the 3d to the 4d and 5d series and at the same time the element with the
maximum magnetic moment in each series shifts to the right in the series. The anisotropy of
the spin moments, Amg, = my(T) — ms(—), is very small, e.g. for an Ir monolayer one yields
ms(T) = 1.044 up and ms(—) = 1.012 ug, and is therefore not further considered. However,
for 5d elements, relativistic calculations have an impact on the size of the spin moments. For
example, the spin-orbit interaction reduces the magnetic moment of Ir by 0.5 up to about 1 .
According to equation (30), Fg;, is proportional to m?, and inversely proportional to third power
of the lattice constant, a. Since the lattice constants of all systems are fixed to the one of Ag,
Figure 19(a) mirrors the functional behavior of the dipole energy Eq;, with respect to the band
filling. Since the dipolar anisotropy or shape anisotropy in the continuum limit, respectively,
Kaip = AEgi, = Eaip(—) — Eaip(T), favors always a magnetization in the film plane, the shape
anisotropy is strictly negative according to our sign convention for the magnetic anisotropy.
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The largest value is obtained for a film with elements between Cr and Mn and the dipolar
anisotropy amounts to K4, = —0.32 meV/atom. This is about 30% of the value of Kgape
as calculated according to equation (29) using continuum theory, in good agreement with the
results of Draaisma et al.[24].

Also the orbital moments, collected in Figure 19(b) exhibit a clear trend: The orbital moments
are negative in the first half of the transition-metal series, e.g. between Sc and Mn, and positive
in the second half of the transition-metal series. The change in sign is reminiscent to Hund’s
third rule which governs the coupling of the spin and orbital moment. A negative (positive)
sign of the orbital moment means that the orbital moment couples opposite (parallel) to the spin
moment. The orbital moments of elements in the second half of the transition-metal series are
an order of magnitude larger than in the first one. It is surprising that the orbital moments in
films made of the 3d, 4d, or 5d elements in the second half of the corresponding transition-metal
series show very similar values although the spin moments are substantially different. We recall
from equation (35) that for uniaxial symmetry as present in thin films, the orbital moment scales
as my o< & oc Z?2, which explains the increase of m; switching the transition-metal series. The
anisotropy of the orbital moments, Am;, has maximum values of about +0.07 up in each series
and cannot be neglected. Therefore, in Figure 19(b) the average moments are shown. Am; is a
rapidly varying function with respect to the band-filling and relates according the equation (36)
to the corresponding rapid oscillation of the magnetocrystalline anisotropy.

The uniaxial magnetocrystalline anisotropy constants Kyica = AEyca = E(—) — E(7), cal-
culated as total energy differences for magnetizations in- and out-of the film plane are exhibited
in Figs. 19(c)—(e). Indeed, results show a continuous and very rapidly varying behavior as func-
tion of the bandfilling. We focus first on the 3d-metal monolayers (Figure 19(c)). Between
Fe and Cu the magnetocrystalline anisotropy energy is negative and the magnetization lies in
the film plane. Between Mn and Fe the magnetization normal to the film plane is energetically
most favorable. A closer look reveals several changes of sign as function of the band filling.
Surprising is the large variation of the value of K as function of bandfilling from 4.75 meV for
a bandfilling between Co and Ni (NVyy = 9.5) and 0.15 meV for V. Non-integer bandfilling are
not only of theoretical interest but have a concrete meaning in the spirit of the virtual crystal
approximation. For example, we calculated an ordered c(2x2) CoNi UML film, which has also
a bandfilling of Ny, = 9.5 per atom. K is practically on the spot of the curve Figure 19(c).
Adding K, on top of Kyca one finds that with the exception of a small interval between Mn
and Fe, where the positive Kyica exceeds the negative Kyg;,, the magnetization is energetically
most favorable to be in the film plane. Thus, among the 3d-metal monolayers (integer nuclear
number) only the Fe(100) UML has a magnetization direction out-of-plane.

Comparing the Kyica between the 3d, 4d and 5d monolayers remarkable, results are observed.
The most spectacular results are the gigantic Ky;ca values for the 5d UMLSs which reach values
of 12.32 meV for Os and —13.50 meV for Ir. Although the maximum magnetic spin moment
within each transition-metal series drops from 4.6 5 in the 3d series to 2.3 g and 1.1 up in
the 4d and 5d series, respectively, and the orbital moments are roughly the same between the
transition-metal series, the variation of Ky;ca changes from —4.69 meV to 0.73 meV in the 3d
series, and from 3.40 meV to 2.82 meV in the 4d series and to these truly gigantic values of
—13.50 meV to 12.32 meV in the 5d series. One further notices that the latter is accompanied
by a rapid change of Ky;ca Of about 25 meV when going from Os to its chemical neighbor Ir.
One further notices that the functional characteristics of Ky;ca shows a much more oscillatory
behavior in the 4d and 5d series, both exhibiting two maxima and three minima, than in the 3d
one with one minimum, one maximum and then several small rapidly oscillating peaks.
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Fig. 20: Minority spin bandstructure (black) and statewise contribution to Ky;ca (red circles)
calculated by perturbation theory for Fe(100) UML in the lattice constant of Ag. The symmetry
of the bands is indicated as well as some matrix elements which contribute to Ky;ca (See text).

These results can be interpreted on the basis of the corresponding bandstructures and the second-
order perturbation theory of the MCA as presented in section 2.5. As an example, the Fe mono-
layer in the Ag(100) lattice constant is analyzed: As can be inferred from Figure 12, the majority
d-band of Fe on Ag(100) is filled, so that these states will not contribute to equation (34), where
only pairs of occupied and unoccupied states near the Fermi level can contribute significantly.
Therefore, we can focus on the minority states, and the corresponding bandstructure is shown in
Figure 20. The matrix elements in equation (34) depend on the symmetry of the states, «, and
the spin-orbit operator [26]. The spatial part of H, has the symmetry of the orbital moment op-
erator, e.g. [, or [,. Therefore it is possible to find out which pairs of states can lead to nonzero
matrix elements in equation (34), depending of course on the magnetization direction. For an
estimate of the MCA, at each E-point Kyvea = 0E(l,) — dE(l,) = AE,, can be calculated
individually, as shown in Figure 20. E.g. near the M-point, states of d., d,.(5, 5*) symmetry
are just below the Fermi level and states of d.(1) symmetry above. These states are coupled by
the [, operator, therefore the bands in this region will contibute more to § E(l,.) than to 0 E(l.),
favoring an in-plane magnetization. Between M and X, a coupling of states with 5 and 5*
symmetry favors an out-of-plane magnetization. After summation over the whole Brillouin-
zone, the latter contributions dominate and, in accordance with Figure 19(c), Fe/Ag(100) has
an out-of-plane magnetization.

If the Fermi level is shifted to higher energies (or the bandfilling increases), the band with 5*
symmetry gets more occupied and the coupling of the 5 and 5* states is no longer possible. The
contribution of the (5(5*)|l,.|1) matrix elements near M gets stronger. Finally, Kyca changes
sign ( see Figure 19(c) ) and the Co UML is in-plane magnetized. As can be inferred from
Figure 20, the contributions to the MCA oscillate strongly in E-space and for an accurate sum-
mation a fine resolution in reciprocal space, i.e. a fine E—point mesh, is necessary. It should
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also be noticed, that the above used decoupling of majority and minority bands can only be
applied for 3d metals. In 4d or 5d monolayers, the exchange splitting is much smaller and both
spin channels give contributions to the MCA. Therefore, a much more complex behavior of the
anisotropy as function of the bandfilling can be seen in Figure 19(d) and (e).

These results give a very excellent overview of the trends of the uniaxial anisotropy K of mag-
netic monolayers. However, the substrate plays also an important role. For weakly magnet-
ically polarizing substrates, e.g. Cu and Ag, the same trend is expected although the actual
values will change. Substrates with large nuclear numbers and thus large spin-orbit interac-
tions, which have in addition a large Stoner enhanced susceptibility, e.g. W or Pt, and can
thus be easily magnetically polarized, may at the end determine the magnetic anisotropy of
these systems. For example, in the light of the experimental results of ultrathin Co films
in contact with other metal films, as sandwich or as multilayers, e.g. Co/Pd(100) [98] or
Co/Pt(100) [99] the large negative K\;ca Value of the unsupported Co monolayer, which is
in accordance with results of Bruno [27] based on perturbation theory, is a fairly surprising
result. In order to get a better understanding of the influence of the substrate on the magne-
tocrystalline anisotropy, we compare the uniaxial Ky;ca for a Co monolayer with and without
substrate and found, Kyca = —4.75 meV for an UML(100) in the lattice constant of Ag and
Kyca = —1.39 meV on Ag(100), Kyica = —1.33 meV for an UML(100) in the lattice constant
of Cu and Kyica = —0.32 meV on Cu(100). This can be understood in the sprit of the model
of Stohr [36], introduced in section 2.5, realizing that the presence of a substrate quenches
predominantly the in-plane orbital moment. Therefore, we observe a clear reduction of Kyica
due to the presence of the substrate, but the general trend across the transtion-metal series will
still hold. At arbitrary substrates 4d- and 5d-metal monolayers will be nonmagnetic. But thin
films show a significant Stoner enhanced susceptibility. In contrast to 3d transition-metals they
may develop a magnetic moment, an electronic structure and an uniaxial Ky;ca comparable to
the isolated monolayers. In turn, strongly spinpolarized substrates with large nuclear number
change even the sign of the MCA from inplane to out-of-plane.

Magnetic Reorientation Transition: Ni/Cu(100)

If more than one or two layers of magnetic material are deposited as thin film, the layers that are
not forming an interface (to the vacuum or the substrate) will show more bulk-like properties.
It is common to separate the volume-like contributions to the effective anisotropy constants,
KV (energy per unit volume), from the surface term K and interface term K (energy unit per
area). This yields for the effective magnetic anisotropy K of a magnetic layer of thickness ¢

KM= KY + (K% + K"/t . (41)

All three anisotropy constants K contain contributions of the dipolar and and the spin-orbit
derived anisotropy. On phenomenological grounds the dipolar anisotropy is also split into a
volume term, Ks‘flape, namely the shape anisotropy due to the average dipolar energy as obtained
by the continuum theory and the contribution due to the reduction of the dipole anisotropy
field experienced by the atoms in the surface and interface region, K5 + K[ Thus,

we can write for the volume term KV = K} + K}ica, and for the surface term K =

Kﬁgﬂp) + KI\S/[SZ) and analogously for the interface term. While for smaller thicknesses Kyjca
and K., can dominate, for thick films the negative shape anisotropy which has a constant
value per atom and thus increases with thickness of the film can determine the easy axis.
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Fig. 21: Schematic illustration of a five monolayer Ni film on a Cu substrate; the bulk-like,
surface and interface regions are marked as V, S, and I, respectively. Right: Schematic plot of
the anisotropy (K) versus inverse film-thickness (¢): the volume-like contribution, KV, is given
by the intersection with the ordinate, the surface- and interface-like term, K + K, can be
deduced from the slope of the curve. Together with the (volume) shape anisotropy, Ksﬁape, these
values determine the in-plane / out-of-plane / in-plane transition of the easy axis for Ni films on
Cu(001).

If these terms have different signs, a reorientation transition of the easy axis can occur. A well
investigated example is the system Ni/Cu(001) [100]: For up to seven layers Ni, an in-plane
easy axis of the Ni film is found. Then a reorientation to perpendicular magnetization sets in
and only very thick films (more than 50 monolayers) show again in-plane magnetization. Here
K* is negative, about —85u€V/atom at room temperature, while K}, is positive, approxi-
mately 30eV/atom. So we expect a reorientation between 5 and 6 monolayers, but actually the
shape anisotropy contributes another —10ueV/atom to KV (the shape anisotropy in thin films
always favors in-plane magnetization). Therefore, the transition sets in after 7 monolayer thick-
nesses. But we have to realize, that the value of KV is much larger than the bulk value of fcc
Ni. In fact, LEED measurements demonstrated that Ni grown on Cu(001) is actually strained,
the in-plane lattice constant is 1.6% larger than in fcc Ni. To compensate this strain, the spacing
between the Ni layers is smaller than in the bulk. From the arguments of the last paragraph
we would now suppose that V, > Vj, therefore R > 1 and, indeed, K" favors perpendicular
magnetization (although the band-filling of Ni does not correspond to the assumptions under-
lying equation (36)). In very thick films, the structure of Ni relaxes back to fcc and the size of
KV decreases until the influence of the shape anisotropy once more brings the easy axis back
in-plane.

4.5 Spin-Orbit Induced Homochiral Mesoscale Spin Spirals

At surfaces, and in other geometries with broken inversion symmetry, magnetic structures are
subject to an antisymmetric exchange interaction, Eq. (37). This Dzyaloshinskii-Moriya inter-
action favors spiral magnetic structures of a specific handedness. In this chapter, we illustrate
the impact of this interaction on the mesoscale magnetic structure of a monolayer of Mn atoms
deposited on the W(110) surface. In this system, the Dzyaloshinskii-Moriya interaction is in-
deed strong enough to induce a spiraling magnetic ground state.
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Fig. 22: Spin spirals with different rotation axes on a symmetric surface. The left panel shows a
right- and a left-handed spiral for each rotation axis. For (a) and (b), the right- and left-handed
spirals are mirror images of each other. In the case (c), however, the surface breaks the mirror
symmetry. Therefore, the two spirals in (c) are not equivalent to each other and may differ in
energy. The right panel illustrates a spiral and its mirror image for Mn on W(110) a material
with local antiferromagnetic order. The top picture shows a left rotating cycloidal spiral, which
was found in nature. The bottom picture shows the mirror image, a right rotating spiral, which
does not exist.

In a wide class of magnetic materials, the magnetic structure changes on a mesoscopic length
scale and this changes can be described by a continuous vector field 7i(7) with || = const. .
In the simplest case, 1 varies only along one spatial coordinate x and the energy of a magnetic
configuration can be described by a simple Landau-Lifshitz functional of the form

B[] = /dm (A (4@ )y m(x)f-f?-m(x)) . (42)

Thereby, the spin stiffness A represents the exchange interactions that favor collinear spin align-

ment, and the symmetric anisotropy tensor K accounts for the preferred orientation of the
magnetization with respect to the crystal lattice, cf. Eq. (26). The exchange term A (%)2 is
symmetric with respect to the rotational direction, i.e. the energy does not depend on the sign
of %. The exchange term reflects the contribution of the Heisenberg Hamiltonian (15) in the
continuous model. In some systems, however, the Dzyaloshinskii-Moriya term (37) has to be
taken into account. This term implies, that the energies for right- and left-handed spin rotations
differ, and in the continuous approximation it is described by

Epm[ni] = /dx <5(T7L(I) X %ﬁ}x))) : (43)

As already pointed out in Chapter 2.6, D is nonzero only if the underlying crystal structure
does not posses inversion symmetry. Prominent examples for such structures are surfaces and
interfaces [101]. Fig. 22 illustrates how a surface can break the symmetry between right- and
left-handed spiral magnetic structures.

The DM term competes with the symmetric exchange and the anisotropy energy: The latter
terms favor collinear spin alignment, whereas the DM term favors a spatially spiraling magnetic
structure of a specific rotational direction. The resulting ground state was already discussed
in 1965 for a simplified energy functional [102], but the actual values of the corresponding
parameters (in particular the size of 5) are still unknown in most cases.

One can expect, that the DM term is of particular importance in atomically thin magnetic films
that are deposited on non-magnetic surfaces: In such systems the local environment of all mag-
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Fig. 23. Homogeneous spin spiral with period
I length | Ans|. The angle between the magnetization

directions of two adjacent lattice sites is constant.

netic atoms is inversion asymmetric. On the other hand, such low-dimensional structures usu-
ally show a large magnetocrystalline anisotropy that favors collinear spin alignment. We want
to find out, to what extent the DM interaction can modify the the magnetic ground state of such

systems. For the exemplary system Mn/W(110), we estimate the model parameters ( A, D, K )
from first-principles, i.e. by electronic-structure calculations in the framework of the density
functional theory.

We deduce the values of the spin stiffness A and the size and sign of the D-vector from the elec-
tronic energies of homogeneous spin spirals. Such spirals are characterized by a fixed rotation
axis and (92)? = const. (cf. Fig. 23). For these spirals Eqgs. (42-43) simplify to

Ey + Epm
|)‘hs |

where the integration is performed over one period length |\|, the sign of Ay distinguishes
between right- and left-handed spirals, and D depends on the size and orientation of D. The
computational scheme that allows us to deal with these large magnetic unit cells is described in
Ref. [103].

In the following, we discuss the exemplary system of a monolayer of Mn atoms deposited on

=47 ANZ + 27 D) + const. (44)
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Fig. 24: (from Ref. [104]) Left panel: Electronic energy of a homogeneous spin spiral depend-
ing on the period length |\,s|. The sign of \,s depends on the rotational direction. The data
points show the results obtained from the electronic-structure calculations and the lines indicate
the fits with the terms of Eq. (44). Right panel: Magnetic structure of Mn/W(110) imaged with
spin-polarized STM. The stripes on the nanometer scale represent the local antiferromagnetic
structure. On a larger length scale, however, the image shows a spiral structure that is driven
by the DM interaction.
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the W(110)-surface [104]. The magnetic structure of this system is well studied experimen-
tally by spin-polarized STM. Locally it shows a c(2 x 2)-antiferromagnetic structure [76] (this
does not conflict in with our ansatz, since the vector field 1 in Egs. (42-43) represents only the
spatial modulations on larger length scales). In Fig. 24, the calculated energies are shown for
spin spirals propagating along the high-symmetry lines and the rotation axes aligned parallel to
the corresponding D-vectors. When the spin-orbit operator, Eq. (32), is neglected the curves
represent the symmetric exchange, whereas the DM interaction and the anisotropy terms are a
consequence of the spin-orbit coupling. From the figure, we can directly identify the homoge-
neous spiral of lowest energy (indicated with \g). In order to permit other magnetic structures,
we obtain the parameters of Eq. (44) from fits to the calculated data and insert these values
in the functionals (42-43). This way, we predict for the system Mn/W(110) a DM-driven left-
handed spin spiral propagating along the [110]-direction with a period |A\| = 7.9 nm. Since we
are describing an antiferromagnet, the mesoscale magnetic structure shows a period of % I\l
We find nice agreement with the experimental result that is presented in Fig. 24.

The studied system nicely illustrates the impact, that the DM interaction can have on magnetic
structures of low symmetry. Here, it is indeed strong enough to compete with the spin stiffness
and anisotropy and induces a so called Dzyaloshinskii spiral on the mesoscopic length scale.
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1 Introduction

One of the hallmarks of strongly correlated electron materials is their extreme sensitivity to
small changes of parameters such as temperature, pressure, structural distortion, or impurity
concentration [1]. This sensitivity is the result of a striking competition between kinetic energy
associated with electron hopping in narrow bands and intra-atomic Coulomb repulsion. It gives
rise to a fascinating range of electronic and magnetic phenomena whose understanding has been
at the focus of fundamental research in condensed matter physics for many years. In addition,
strongly correlated electron systems, in particular, transition metal oxides, are presently of great
interest because of the possibility of utilizing them for technological applications.

An example which illustrates the range of phenomena that are observed due to small changes
of external parameters is Ca,_,Sr,RuQ,. It has the same layer perovskite structure as the fa-
mous high-T.. superconductors, with transition metal ions at the center of oxygen octahedra (see
Fig. 1, left panel). Although the replacement of Sr via Ca is iso-electronic, the structural distor-
tions caused by the smaller size of Ca indicated in the right panel give rise to a remarkably rich
phase diagram (see Fig. 2, left panel): The pure Sr ruthenate (x = 2) is superconducting with
T, = 1.5 K, whereas the pure Ca compound (z = 0) is a paramagnetic or anti-ferromagnetic
insulator. At finite z < 0.5, other magnetic phases are observed, while the range = > 0.5 is
paramagnetic.

Density functional theory (DFT) in the local density approximation (LDA) predicts Ca;RuO,
to be metallic rather than insulating. This failure is quite typical for many transition metal
oxides, including V,05 and LaTiOs. It is caused by the inadequate description of the Coulomb
interaction within the partially filled d electron shell. This interaction is comparable or larger

Fig. 1: Left: Layer perovskite structure of quasi-two-dimensional ruthenate SroRuO, or cuprate
Ba,CuO,. Right: structural distortions in =/y plane of ruthenate due to substitution of Sr via
Ca; blue dots: O? ions, red dots: Ca/Sr?* ions, Ru** ions are at the center of O octahedra.
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Fig. 2: Left: Iso-electronic phase diagram of Ca,_,Sr,RuQ,, with superconducting (SC) phase
for x = 2, paramagnetic and canted anti-ferromagnetic insulating phases (Pl and CAFI) for
x — 0 [2]. Right: wide d,, and narrow d,. ,. Ru t,, bands of SroRuO, [3].

than the hopping interaction between atoms and cannot be simply expressed in terms of the local
electron density. In some systems, the combination of LDA with an onsite Coulomb interaction
—the so-called LDA+U method [4] — can explain the insulating behavior observed in long-range
anti-ferromagnetic phases (see lectures by G. Bihlmayer). In general, however, the transition
from metal to insulator requires a more refined formalism that accounts explicitly for quantum
mechanical fluctuations within electron shells. The possibility of a purely correlation driven
transition between paramagnetic metallic and insulating phases was first discussed by Mott
about 60 years ago [5]. A theoretical formulation of such a transition in realistic materials,
where metallic and insulating properties are treated on the same footing, can be achieved via
the Dynamical Mean Field Theory (DMFT) [6, 7, 8] which is the subject of this lecture.

The unit cells of strongly correlated materials tend to have complex shapes, with several dif-
ferent types of atoms (see Fig. 1). An important first step towards a theoretical description
is therefore the detailed one-electron calculation of the electronic properties within the LDA.
There exist nowadays various codes which provide sophisticated information on many of these
properties. Since many-body calculations become exponentially more time-consuming with in-
creasing number of orbitals, the second step consists in identifying those partially filled bands
near the Fermi level £ in which Coulomb interactions lead to the most dramatic effects. In
the case of Sr,RuQ,, these are the three Ru 4d t,, bands where, because of the layer structure,
d., is a nearly two-dimensional wide band and d, ,. are nearly one-dimensional narrow bands,
all of which are about 2/3 filled (total filling is n = 4), see Fig. 2 right panel. Because of the
octahedral crystal field, the e, bands (d,>_,2 and d.=) are empty. Although the O 2p bands are
filled, it is important to keep in mind that hopping between Ru 4d orbitals takes place indirectly
via O ions which are located between Ru ions. Sr 5s orbitals form empty bands far above Er.
The bands close to ' can therefore be described in terms of an effective single-particle Hamil-
tonian H (k) (in the present case a 3 x 3 matrix) with band energies ¢,,(k), where m is the band
index.

The main changes of the independent-particle band structure due to Coulomb interactions are
shifts of band energies giving rise to band narrowing, life-time broadening, and new excited
states (satellites or Hubbard bands) that do not occur within the single-electron picture. Thus,



Ad4 Ansgar Liebsch

correlations cause a transfer of spectral weight from low to high energies. Another important
consequence of Coulomb interactions occurring in multi-band materials is that orbital occupan-
cies of interacting bands can differ from those of non-interacting bands. As discussed in [9], in
SryRuO; this effect arises since the narrow d, ,. subbands are more strongly correlated than
the wide d,,, band. Of course, the total number of electrons does not change due to Coulomb
effects, but how these electrons are distributed over the various conduction bands depends on
how they interact. Thus, Coulomb correlations can lead to inter-orbital charge transfer, i.e., to
an increase or decrease of orbital polarization. In the following sections we discuss this kind of
correlation induced internal charge transfer in a variety of transition metal oxides.

The phenomena discussed above can be theoretically formulated in terms of a complex self-
energy Y (k,w). The Green’s function describing the electron motion through the crystal is

1

Glow) = T H TR )

(1)

where 4 is the chemical potential insuring the correct total electron count. Neglecting matrix
element effects associated with the frequency and polarization of the incoming light, the imag-
inary part of this Green’s function is proportional to the photoemission intensity for the point
k of the Brillouin Zone. For clarity we omit here orbital indices. Thus all quantities are as-
sumed to be matrices in orbital space. The spin index is also dropped since we consider only
paramagnetic systems. Because of the translational symmetry of the crystal, the lattice Fourier
transform of G is defined as

1

Giyw) = k(R —R;) 7 2
(@) ; w+pu—Hk) —X(k,w) @

so that the so-called ‘local’ Green’s function is given by the expression

1
gw—ku—H(k)—E(k,w)'

Gw) = Geplw) = 3)

Analogous equations can be written down for the self-energy. Since H (k) is known, the main
task is now to find some (approximate) scheme for the evaluation of X (k, w).

2 Dynamical Mean Field Theory

The great appeal of DMFT is that it is applicable at weak and strong Coulomb interactions, and
that it describes metallic and insulating behavior in a consistent manner. Let us consider the
Hubbard model with on-site Coulomb interactions:

H = - Z timjnc;;nacjm + Z Unimmiml + % Z (U/ - Jéaa’)nimanina/

iymno m im#noo’

- Z J[ C;;m Cim Copy | Cim't C;;m C%lcz‘m’Tcim’l]a (4)

imz#£m/

where m,n are orbital indices, 7, j denote lattice sites R, ;, and t¢;,,,;,, is the lattice Fourier
transform of H (k),,,. U and U’ are intra- and inter-orbital Coulomb matrix elements and J is
the Hund exchange integral. Below we consider mainly systems involving ¢,, orbitals.
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The key conceptual feature of DMFT is that, instead of solving the hopelessly complicated
Hamiltonian defined above, a simpler version is considered where Coulomb interactions are
retained only at one site (say at < = 0) while at all other sites they are replaced by the local
self-energy. Thus the interacting lattice is approximated by a single interacting site which is
surrounded by a lattice with an extra complex potential given by >(w). The appropriate Green’s
function G’ for this “impurity’ problem can be derived by using the Dyson equation which
removes X(w) from the origin. Thus,

Gii(w) = Gij(w) — Gio(w)Zoo(w) G, (w)- ®)

For the special case : = j = 0, and with the abbreviations X(w) = ¥ (w), G(w) = Goo(w),
and Gy(w) = G (w), we find the important relationships

Go(w) = [GTH(w)+E(w)] ™, (6)

Sw) = Gi'(w) =G W) (")

The physical meaning of G(w) is the following: It describes electronic motion from site i = 0
through the actual crystal and returning to : = 0, with one-electron hopping specified by the
coefficients ¢;,,,;,,. This motion, however, takes place within an extra complex potential given
by ¥(w) at all sites except ¢ = 0.

Graphically we can represent the above approximation as follows:

U U U by by b)) b)) b)) b))
U U U by U > b)) by by
U U U b)) b)) b)) b)) b)) b))

The true interacting lattice on the left is simulated via the single-site interacting impurity at the
center. The spectral information to be compared with photoemission data then follows from the
lattice on the right, where all sites have a complex local self-energy. The picture at the center
demonstrates the importance of removing the local self-energy from the origin before starting
the many-body impurity calculation. If G(w) were used in this step rather than Go(w), one
would add the Coulomb terms involving U to the local ¥(w), which would amount to a severe
double-counting of Coulomb interactions.

How do we find the so far unknown self-energy for the impurity calculation at the center? This
is done iteratively, by starting with some reasonable guess, or by putting X(w) = 0. We then
proceed via the following steps:

1. calculate G(w) via Eq. (3)

2. calculate Gy(w) via Eq. (6)

3. calculate new G(w) via impurity solver (see below)
4. calculate new X(w) via Eq. (7) and return to step 1.

Typically 10 to 20 iterations are required to achieve convergence, except close to metal insulator
transitions where convergence tends to be slower.

For the quantum impurity calculation a variety of methods is available, such as quantum Monte
Carlo (QMC), exact diagonalization (ED), numerical renormalization group (NRG), density
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Fig. 3: Level scheme for exact diagonalization [11]. €, 2 5 denote the ¢, orbitals at the impurity
site which interact via Coulomb and exchange interactions. Each of these levels hybridizes with
its own set of bath levels. Levels 2 and 3 and their baths are assumed to be degenerate.

matrix renormalization group (DMRG), iterated perturbation theory (IPT), non-crossing ap-
proximation (NCA), etc. The first two are the most accurate and versatile ones for realistic
materials. They are complementary in the sense that their range of applicability and/or com-
putational tractability differs somewhat. Where they overlap they have been shown to be in
excellent numerical agreement. Here we focus on exact diagonalization [10] which during the
recent years has been demonstrated to be a highly useful and efficient method for a variety of
multi-band systems [11]. Compared to QMC it does not suffer from sign problems. Thus, it is
applicable at rather low temperatures, large Coulomb energies, and for full Hund exchange.

In the procedure outlined above we have effectively replaced the true lattice self-energy ¥ (k, w)
by its local version 3 (w) which may be viewed as lowest order term in a lattice site expan-
sion of X(k,w). To go beyond this ‘single-site’ or ‘local’ approximation one needs to retain
Coulomb interactions explicitly in a (small) cluster of sites rather than only at : = 0. Although
the many-body problem then becomes computationally much more involved, there is currently
considerable interest in cluster extensions of DMFT since the momentum dependence of the
self-energy can have a significant influence on the nature of the metal insulator transition (see
Section 10).

3 Multi-Band Exact Diagonalization

To solve the single-site quantum impurity problem within ED/DMFT, the true lattice environ-
ment of the impurity at ¢ = 0 is simulated via a discrete set of non-interacting ‘bath’ levels.
Thus, instead of H defined in Eq. (4) we consider the finite “cluster’ sketched in Fig. 3:

HY = Z EmNmo + Z ELNko + Z Virlch cre +Hoc] + Z Unpt om|
mo ko m

mko

1
+ 5 Z (U, — J(Sggl)nmgnmla/ — Z J[c;;Tcmlc;,lcm/T + C;Tcrtucm’Tcm’l]' (8)

m#m/’oo’ m#£m/

The levels representing the impurity orbitals are ¢,,, the levels of the surrounding bath are
£k, and the V., specify the hybridization interactions between impurity and bath levels. The
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remaining Coulomb and exchange interactions at the impurity site are identical to those of the
original lattice Hamiltonian in Eq. (4). The site index i = 0 is dropped for convenience. The
total number of cluster levels is denoted as n,. (The term “cluster’ refers here in ED to impurity
+ bath and should not be confused with cluster extensions of DMFT.)

The non-interacting cluster Green’s function is given by
Gg = (iwn +p— Hg') ™, ©9)

where H' represents the first three terms of H<. Since we are interested in correlation effects
at finite temperatures we evaluate Green’s functions and self-energies at Matsubara frequencies

= (2n + 1)7/3, where n > 0 and 3 = 1/T [12]. If G¢ is diagonal in orbital space this
expression can be easily reduced to

. . V k:|2 1
GCZ n) — < n m ) | m” > ) 10
o,m('M )= (iwn +p—em — gk o - (10)

The energy levels and hopping terms appearing in the cluster Hamiltonian Eq. (8) do not have
any physical meaning. Their sole purpose is to achieve an accurate ‘cluster’ representation of
the corresponding lattice impurity Green’s function Gy ,,,(iw,). A standard conjugate gradient
fitting routine can be used to find the cluster parameters, such that Gy, (iw,) ~ G, (iwy),
where we assume again diagonality in orbital space.

Once the non-interacting cluster parameters are found, the eigenvalues F, and eigenstates |v/)
of the many-body cluster Hamiltonian are evaluated via exact diagonalization. The finite tem-
perature interacting cluster Green’s function is given by [12]

cl (; lu|cma| —BE, —
Gnlm(zwn> = ZZE E _'_an[ - +e ﬁE#]

8B, [(pleme )2 [(pleme| V)2
B _Z ’ (Z (E, E)+iwn+;(EM—Ey)+iwn)’ (1)

where Z = e PP is the partition function. Applying Eq. (7) to the cluster, we find

¥ (iw,) = Gg{m(mn)—l—Gfg(mn)—l. (12)

The key assumption is now that this ‘cluster’ self-energy is a physically reasonable represen-
tation of the lattice self-energy, ¥ (iw,) ~ %,,(iw, ), which can then be inserted in G, (iw,).
Evidently, at each iteration step two projections are carried out: (i) The lattice impurity Green’s
function Gy is projected onto the corresponding cluster Green’s function G¢', and (ii) the clus-
ter self-energy ¢ is projected onto the lattice self-energy . In ED, each iteration therefore
involves the following steps:

X —>G—-Gy—G -G -3xd -3 (13)

To illustrate the quality of the projection Gy — G¢ we show in Fig. 4 Im Gy, (iw,,) obtained
from

Gom(iwy,) = /dw Pm(w)/ (tw, — w), (14)

which corresponds to Eq. (6) in the non-interacting limit ¥ = 0 for diagonal G. [Note that
ImGo ,(iw, — 0) — —imp,,(0) and Im Gy, (iw,, — 00) — 1/iw,.] As density of states
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Fig. 4: Upper left: a, and ¢ density of states components of V,03 [13]; upper right: spectral
distributions at real w derived from Eq. (10) after fit along Matsubara axis. Bottom: com-
parison of Green’s functions at imaginary frequencies for two temperatures. Solid red curves:
Im G m(iwy), EQ. (14); blue dots: Im G§/,,, (iw,), Eq. (10).

pm(w) we take the a, and e; components corresponding to V,03 [13] (see Section 7). These
lattice impurity Green’s functions G ,,(iw,) are compared with fits achieved via Eq. (10),
where each impurity orbital is assumed to hybridize with three bath levels, as sketched in
Fig. 3. At real frequencies Gy, has a continuous spectral distribution given by the den-
sity of states component p,,(w), whereas Gg{m is discrete by construction (a small artificial
broadening is included for illustrative purpose). Nevertheless, along the Matsubara axis both
are seen to be in excellent agreement. This comparison demonstrates that, for finite clusters,
the representation at Matsubara frequencies is not unique. In fact, within a certain accuracy,
Go.m(iwy,) derived from a continuous real-w spectrum can be represented via an infinite num-
ber of discrete spectra corresponding to different cluster sizes n,. Because of the projections
lattice — impurity — lattice indicated in Eq. 13, continuous lattice and discrete cluster
versions of Green’s function and self-energies are assumed to exist at each iteration of the
ED/DMFT procedure (see also Sections 4 and 8).

Because of the Boltzmann factor in Eqg. (11), at low 7" only a small number of eigenstates
of H¢ are needed. Moreover, H¢ is block-diagonal in spin sectors, consisting of extremely
sparse submatrices. The eigenstates can therefore be efficiently evaluated by using the Arnoldi
algorithm [14]. Basis vectors are of the form |nyy, ..., n,.q, 01, ..., Ny, ), Where n,, = 0 or
1. For n, = 12, the largest spin sector corresponds to n; = n; = 6, yielding matrix dimension
N = d(ny) x d(n;) = 924* = 853776, where d(n,) = ns!/[n,!(ns — n,)!]. The sums over
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Fig. 5: Left: Comparison of Sr,RuO, quasi-particle spectra derived using QMC/DMFT with
tight-binding density of states. Solid (dashed) curves: d,, (d,.,.) distributions. Right: com-
parison of quasi-particle band structure with tight-binding bands (symbols) [9].

w in Eq. (11) can be readily obtained via a Lanczos procedure after applying ¢,,, and ¢  to
the excited states |). Most of the examples discussed in the subsequent sections are for ¢,,
bands, where each orbital couples to only two bath levels, giving n, = 9 with N = 1262, Since
the baths of the impurity levels interact indirectly via the on-site Coulomb interaction, the level
spacing of excited states is very small. Thus, convergence with cluster size is achieved far more
quickly than in the single-band case which requires 3. ..5 bath levels. As a result, ED/DMFT
can be used to investigate realistic multi-band materials. For n, = 9, one iteration then takes
only a few minutes. Additional details concerning the multi-band ED/DMFT approach can be
found in Ref. [11].

4 Cay_,Sr,RuO,

Fig. 5 illustrates the typical modifications of the one-electron bands of SroRuO, due to Coulomb
interactions. There is an overall narrowing of bands by about a factor of two which is consis-
tent with data obtained using angle-resolved photoemission spectroscopy (ARPES) [15]. Also,
due to their finite lifetime the quasi-particle states acquire intrinsic broadening. Moreover, or-
bital occupancies differ from those of the bare tight-binding bands. As discussed in Ref. [9],
charge is transferred from the more strongly correlated narrow d,. ,. bands to the wider d,
band, implying correlation induced enhancement of orbital polarization as a result of the planar
geometry. The d,, van Hove singularity at M is therefore shifted very close to E». While in
LDA it is about 50 meV above E [3], correlations reduce this value to about 10 meV. Thus,
the topology of the Fermi surface remains the same as predicted in LDA and confirmed in de
Haas-van Alphen (dHvA) measurements. If the van Hove singularity would sink below E'r, the
d., Fermi surface would change from electron-like to hole-like, in contradiction to the dHVA
data. Similar Coulomb driven internal charge redistributions are found in the systems discussed
in the following sections.
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The topology of the Fermi surface of SroRuO, was controversial for several years since early
photoemission data had observed the d,, van Hove singularity below Er. This conflict was
resolved when it was demonstrated [16] that the surface layer of SroRuO, exhibits a reconstruc-
tion similar to the distortion shown in the right panel of Fig. 1. This causes a downward shift of
the d,, band relative to the d,. ,. bands which is detected in surface sensitive ARPES measure-
ments. A similar reconstruction takes place when Sr is replaced by Ca at = = 0.5, with the d,,
van Hove singularity below Er, as observed in ARPES [17].

As pointed out in the Introduction, Sr,RuQ, is metallic, but iso-electronic Ca,RuQy is insu-
lating. To understand this striking difference, it is necessary to take into account the structural
distortions that occur when Sr ions are replaced by the smaller Ca ions. Similar to the surface re-
construction mentioned above, this substitution induces rotations of Oxygen octahedra, and for
x < 0.5 also tilting and flattening of octahedra. As discussed in Ref. [18], these deformations
cause hybridization among the Ru ¢,, bands, an effective narrowing of the main d,,, component,
and, most importantly, a lowering of the d,,, band due to inter-orbital charge transfer from d,. ,,.
to d,,. This structure induced splitting is denoted here as A = ¢, ,. — €,,. Thus, A = 0 for
the pure Sr compound (z = 2)and A ~ 0.4...0.5 eV for Ca,RuO,. Note that the Ca induced
splitting enhances the crystal field splitting Ay ~ 0.26 eV present already at x = 0 as a result
of the planar geometry [9].

Fig. 6 illustrates the enhancement of Ru ¢, orbital polarization due to Coulomb correlations
as calculated within ED/DMFT for Hund exchange J = U/4and U’ = U —2J[19]. A =0
yields only mild polarization enhancement. Thus, even at sizable Coulomb energies SroRuO,
remains metallic (see QMC/DMFT spectra in Fig. 5, left panel; ED/DMFT spectra support
this conclusion). For A > 0, however, orbital polarization increases strongly, until for A ~
04...05eVand U =~ 3...4 eV, it becomes complete: n,, — 1 and n,,,. — 0.5 (per spin),
i.e., the d,,, band is pushed below Er, while the d, ,. bands are half-filled. The spectra shown
in the lower panels suggest that at U ~ 3 eV Cay,RuO, is metallic, whereas at U ~ 4.5 eV it
is insulating, with a filled d,,, band and d,. ,,.. bands split into lower and upper Hubbard bands.
Thus, because of the structural anisotropy of this layer material, Coulomb interactions modify
the Ru ¢,, valence bands in qualitatively different ways.

Since the insulating phase shown in the lower right panel of Fig. 6 is paramagnetic, it corre-
sponds to the high-temperature PI phase for x — 0 in the phase diagram presented in Fig. 2. For
T < 100 K, a (canted) anti-ferromagnetic phase is observed which has been analyzed within
the LDA+U method [20].

These results show that the metal insulator transition in multi-band systems can be quite com-
plex. Similar combinations of filling or emptying of subbands, with other subbands becoming
half-filled, are found in other transition metal oxides, such as LaTiO3 [21] and V,03 [13, 22]
which are discussed in subsequent sections. Thus, in Ca,_,Sr,RuQ, there does not appear to
occur a so-called orbital-selective Mott transition, as had been proposed in [20]. In the presence
of narrow and wide bands, it is conceivable that these bands undergo separate Mott transitions,
at different critical Coulomb energies U.. As a result of correlation driven charge transfer be-
tween subbands, however, enhancement of orbital polarization appears to dominate the metal
insulator transition in Ca,_,Sr,RuO,. On the other hand, in the special case of half-filled
particle-hole symmetric bands, orbital polarization is precluded. Narrow and wide subbands
then indeed exhibit sequential, ‘orbital selective’ transitions, implying an intermediate phase in
which bad-metallic behavior in the wide band coexists with insulating behavior in the narrow
band [23, 24]. Depending on the nature of the Coulomb interaction between these bands, both
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Fig. 6: Top panel: Correlation induced change of orbital occupancies for Ca;_,Sr,RuO, [19].
A denotes the splitting between d,. ,. and d,, levels due to structural distortions when Sr
is replaced by Ca. Bottom panels: ED/DMFT spectral distributions for A = 0.4 eV; solid
(dashed) curves: d,, (d..,.) components; left: metallic phase; right: insulating phase.

transitions can be first-order, or a combination can occur of first-order transition for the narrow
band and a 7" = 0 quantum phase transition for the wide band [25].

The spectral distributions shown in Fig. 6 are obtained from the interacting cluster Green’s
function, Eq. (11), at real w. (For illustrative purposes, a small artificial broadening is included.)
To distinguish metallic from insulating phases, the inspection of cluster spectra is sufficient.
To compare with photoemission data, it would be desirable to generate the equivalent lattice
spectra via Eq. (3). This can be achieved via analytical continuation of G, (iw, ) ~ G¢ (iw,) or
Yo (iwy) ~ ¥ (iw,,) to real w. The latter is preferable since one can then use X, (w) directly
in Eq. (3), thereby avoiding the back-transformation of single-particle features stemming from
H(k). As discussed in Section 3, the extrapolation from Matsubara frequencies to real w is
not unique. Nevertheless, in principle, one could derive from the discrete cluster spectra shown
in Fig. 6 the equivalent continuous spectra, in analogy to the non-interacting example given
in Fig. 4. In the case of QMC/DMFT, real-w spectra are usually generated via the maximum
entropy method [26] which accounts for statistical uncertainties of the calculated results. In
ED/DMFT inaccuracies originate from the small finite size of the bath surrounding the quantum
impurity. Extrapolations of X, (iw,) or G,,(iw,) to real w can be done, for example, using the
routine ‘ratint’ [27], as discussed in [11] for Na,CoO, (see Section 8).
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Fig. 7: Left: Comparison of photoemission spectra for SrVO5; and CaVO; at low and high
photon energies [28]. Right: QMC/DMFT spectra for SrVO3; and CaVO; [29].

5 SrVO;and LaTiO;

In the preceding section we have seen that SroRuO, and Ca,RuO, have fundamentally differ-
ent electronic properties, even though both have four electrons in the Ru 4d ¢,, valence shell.
Evidently small differences of single-particle interactions due to structural distortions can lead
to qualitatively different results once strong local Coulomb interactions are taken into account,
with metallic (superconducting) behavior in one limit and paramagnetic or anti-ferromagnetic
insulating behavior in the opposite limit.

Analogous qualitative differences exist in 3d' materials, such as SrVO3 and LaTiO3 [21]. The
former system is a cubic perovskite. Thus all six V ¢,, spin bands are perfectly degenerate, with
occupancy 1/6. Coulomb correlations do not affect this degeneracy, i.e., orbital polarization
remains zero. Thus, although the on-site Coulomb energy of V ions is much larger than the
single-particle band width (U ~ 5.55 eV, J ~ 1.0 eV, compared to W = 2.5 eV), the only
effects that occur due to correlations are band narrowing of the quasi-particle peak near Er,
broadening of quasi-particle states due to finite lifetime, and satellite formation associated with
lower and upper Hubbard bands [29].

Fig.7 shows these effects for SrVO3; and CaVOs. The latter exhibits slight deviations from
cubic symmetry due to the smaller size of Ca ions compared to Sr. The occupied part of the
spectrum can be compared with the photoemission data shown in the left panel. The unoccupied
range can be compared to inverse photoemission spectra. A crucial point here is to be aware
of the surface sensitivity of photoemission data. As the experimental data indicate, bulk-like
spectra taken at high photon energies tend to be less correlated than data at low energies which
contain more surface contributions due to the shorter electronic escape depth. As discussed
in [30] the local density of states at the surface of SrVOs is effectively narrowed compared
to the bulk, as a result of the reduced coordination. (This band narrowing affects the d,. .
bands more than the mainly intra-planar d,,, band.) Thus, surface quasi-particle distributions
calculated within QMC/DMFT [30] exhibit more pronounced narrowing of the main peak near
E'r and stronger Hubbard bands, in agreement with the experimental spectra shown in Fig. 7.
A detailed discussion of correlation effects at Sr\VO; surfaces is given in [31].
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Fig. 8: Upper row: Orthorhombic LaTiO3 density of states components and QMC/DMFT quasi-
particle spectra [21]. Lower left: Density of states components for tetragonal LaTiOs; right:
orbital polarization for orthorhombic and tetragonal LaTiOs, calculated within ED/DMFT
[32]. For UM ~ 5...6 eV orthorhombic (tetragonal) LaTiOs is insulating (metallic).

In contrast to SrVO3 and CaVOgs, LaTiO3 exhibits sizable orthorhombic distortions, giving
rise to substantially different ¢,, subband occupancies [21]. Fig. 8 shows the density of states
components, indicating larger a, than e; occupancy. QMC/DMFT quasi-particle spectra for
this structure demonstrate that Coulomb correlations greatly enhance this orbital polarization.
In fact, for U = 5 eV, J = 0.7 eV, the ¢, bands are nearly empty, whereas the a, band is
half-filled, with a Mott gap between lower and upper Hubbard bands. Effectively, therefore the
to4 Subband degeneracy is reduced from three to one. A similar orbital polarization is obtained
for YTiO3 which exhibits even stronger non-cubic distortions than LaTiO3 [21].

In view of this striking enhancement of orbital polarization due to correlations it is interesting to
inquire what happens when thin layers of a material such as LaTiOs are placed in artificial envi-
ronments. In fact, heterostructures consisting of LaTiO3 and SrTiO3 layers have recently been
observed to be metallic [33] although both systems in their bulk forms are insulating. (SrTiO3
with 3d° is a band insulator.) The natural explanation of the observed metallicity appears to be
the interface layer of Ti ions with 3d°® occupancy. On the other hand, it is likely that the first
few layers of LaTiO3 grow in a tretragonal fashion, with the a/b plane dictated by the cubic
SrTiO5 substrate. The lower left panel of Fig. 8 shows that the crystal field splitting of a hypo-
thetical tetragonal LaTiOs structure has the opposite sign compared to the usual orthorhombic
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Fig. 9: Left: Orbital polarization of La;_,Sr,TiO3 for different hole dopings calculated within
ED/DMFT (n = 1 — z). Right: Subband and average occupancies (per spin) as functions of
chemical potential. Arrows mark hysteresis behavior for increasing/decreasing p [34].

version. Moreover, the band width is appreciably larger. ED/DMFT calculations then indicate
that correlations enhance this reversed orbital polarization, with a Mott transition at consider-
ably larger U, > 6 eV within the quarter-filled doubly degenerate d,. ,. bands and the d,, band
empty [32]. Although the true structure of interlayer LaTiO3 has not yet been determined, these
results suggest that the tetragonal compound is a strongly correlated metal rather than a Mott
insulator. Thus, the observed metallicity of LaTiO3/SrTiO3 heterostructures should arise not
only from the interface Ti 3d%5 ions but from the entire LaTiO; layer.

6 La;_,Sr,TiO;

The remarkable orbital polarization close to the Mott transition of Ca,RuO, and LaTiO; dis-
cussed in Sections 4 and 5, in particular, its sensitivity to structural distortions, raises the ques-
tions: How robust are these metal insulator transitions against doping, i.e., deviations from
integer occupancy? How do the different ¢,, subbands participate in the doping process? Of
course, if all bands are identical as in cubic SrVOs, doping affects all subbands in the same
way. Fig. 9 suggests a fundamentally different picture in the case of La;_,Sr, TiO3. The nearly
complete orbital polarization of the Mott phase is greatly diminished, giving rise to a large flow
of charge from the half-filled a, band to the empty ¢ bands. For instance, at 5% hole dop-
ing (n = 0.95), ng, ~ 0.32 and n., ~ 0.08 per spin band, increasing the total e; occupancy
from near zero to 0.31 and decreasing the total a, occupancy from near unity to 0.64. Thus,
the internal charge flow is six times larger than the external charge transfer. Evidently external
hole doping takes place via simultaneous electron and hole doping of ¢,, subbands. Analogous
results are found for electron doping [34].

This behavior may be understood by analyzing the variation of the subband occupancies with
chemical potential. As shown in the right panel of Fig. 9, the subband charge compressibili-
ties x,, = dn,,/Ou have opposite signs and their magnitudes are much larger than the average
charge compressibility. Near the Mott transition the x,, become singular, permitting large in-
ternal charge rearrangements. These result indicate that the combined effect of charge and
orbital degrees of freedom leads to a non-trivial generalization of the one-band picture close to
half-filling and of the multi-band picture involving identical orbitals.
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Fig. 10: Left: V,03 t,, subband occupancies as functions of U, derived within ED/DMFT
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V5,03, calculated within QMC/DMFT [22].

7 V503

The transition between paramagnetic metallic and insulating phases of V,05 observed at 7" ~
150...400 K [36] has been studied using DMFT by several groups [13, 22]. As in the case
of SrVO;, the partially occupied valence bands correspond to V 3d t,, orbitals. Because of
the corundum lattice structure, these orbitals are split into singly-degenerate a, and doubly-
degenerate e, components, whose densities of states are shown in Fig. 4 [13]. Within LDA, the
subband occupancies are n,, = 0.275 and n., = 0.362 per spin band (total occupancy n = 2).
Fig. 10 shows that in the presence of local Coulomb interactions, this orbital polarization is
amplified, until, in the range U ~ 5.1...5.6 eV (for J = 0.7 eV), it becomes complete: The
e, bands are half-filled and the a, band is empty. As shown by the spectral distributions on the
right [22], the e, bands exhibit lower and upper Hubbard bands, while the a, band is pushed
above Er.

The V,05 subband occupations as functions of U reveal slight differences between full Hund
exchange in the quantum impurity calculation and the more approximate Ising-like exchange.
In particular, the critical U, is about 10 % smaller for Ising exchange. The latter amounts to
the neglect of spin-flip and pair-exchange terms in the Hamiltonians  and H<, i.e., the last
terms in Eqs. (4) and (8). Thus, only density-density Coulomb and exchange interactions are
included. This approximation is usually made in QMC/DMFT calculations to avoid sign prob-
lems. In ED/DMFT these problems do not arise. Thus, both Hund and Ising-like exchange can
be included. The solid and red dots in the left panel of Fig. 10 are for identical LDA density of
states input and for the same Ising-like exchange, demonstrating excellent agreement between
ED/DMFT [35] and QMC/DMFT [13].

The correlation driven enhancement of orbital polarization in V,03, Ca;,RuO,4 and LaTiO3

shown in Figs. 10, 6 and 8, can be illustrated schematically as indicated in Fig. 11. The oc-
cupied part of the uncorrelated density of states of these transition metal oxides has contri-
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Fig. 11: Schematic illustration of correlation driven enhancement of orbital polarization. Up-
per row: crystal field split t,, LDA densities of states for occupancies n = 1, 2, 4, correspond-
ing to LaTiOg, V4,03 and Ca,RuQ,, respectively. Blue curves: singly-degenerate a, band, red
curves: doubly-degenerate e; bands. In the case of Ca;RuQy, a refers to d,,, e to d,, .. The
vertical bars denote the Fermi level. Lower row: orbitally polarized Mott phase. n = 1 : empty
e, bands, lower and upper Hubbard peaks of half-filled a, band; n = 2 : empty a, band, lower
and upper Hubbard peaks of half-filled ¢ bands; n = 4 : filled a, band, lower and upper
Hubbard peaks of half-filled ¢; bands.

butions from all 5, components. In the strongly correlated metallic phase, this remains true,
except that orbital polarization is increased. In the insulating Mott phase, however, some sub-
bands are completely empty or filled, while the remaining ones are half-filled and split into
lower and upper Hubbard bands. The Mott gap therefore involves transitions between states
of opposite symmetry character. Note, however, that other materials can exhibit a different be-
havior. The hypothetical tetragonal structure of LaTiO5 shown in Fig. 8 reveals a Mott phase
with n,, ., — 1/4 and n,, — 0 [32]. Moreover, orbital polarization in BaVS; was shown to
decrease with increasing local Coulomb interaction [37]. Also, the Mott transition in LaVO;
and YVOj; occurs before orbital polarization is complete [38]. Finally, in Section 4 we pointed
out the possibility of orbital selective Mott transitions. Thus, 60 years after Mott first discussed
the paramagnetic, correlation induced metal insulator transition, multi-band DMFT treatments
reveal that these transitions in realistic transition metal oxides can be highly complex.

8 Nay3Co00,

In Section 4 we have seen that Coulomb correlations in Sr,RuO, give rise to a charge transfer
between t,, orbitals, so that the d,,, van Hove singularity at the M point of the Brillouin Zone is
pushed very close to the Fermi level. A slight reduction of the band width, as induced via Sr —
Ca substitution, together with moderate Coulomb interactions, shifts this singularity below E,
so that the topology of the d,,, Fermi surface sheet changes from electron-like to hole-like. The
Fermi surface of the layer compound Na,CoO, has remained controversial for several years,
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Fig. 12: Upper panels: LDA t,, bands of Na, ;CoO, and Fermi surface (schematic), revealing
six small e;, hole pockets [39]. Lower panel: Subband occupancies as functions of U for several
fixed values of J, derived within ED/DMFT. H; and H, denote tight-binding Hamiltonians with
slightly different ¢,, crystal field splittings: A; ~ —130 meV , A, ~ —10 meV [42].

raising the question whether Coulomb correlations might be the origin of the discrepancies
between LDA predictions [39] and photoemission data [40]. As shown in Fig. 12, because of
the hexagonal structure of this material, the LDA Fermi surface exhibits six small hole pockets
arising from the partially filled Co e;, subbands which have not yet been observed using ARPES.
Na,CoO,, with 3¢°** occupancy of the Co 3d bands, as a function of Na doping reveals a
remarkably rich phase diagram, ranging from Mott insulator at x = 0, superconductor at = =
0.3 (if hydrated), charge disproportionation at x = 0.5, pronounced Curie-Weiss behavior near
x = 0.7, and band insulator at x = 1. The presence of the hole pockets is believed to have a
strong influence on the nature of the superconductivity at = 0.3. Thus, it is clearly important
to understand the topology of the Fermi surface.

Early attempts to reproduce these measurements by taking into account strong local Coulomb
interactions within the Co 3d shells failed since QMC/DMFT results revealed stabilization of
the e pockets, rather than their disappearance [41]. An extensive analysis within ED/DMFT
demonstrated that orbital polarization between Co t,, subbands may increase or decrease, de-
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Fig. 13: Quasi-particle spectra of Na, ;C0oO, calculated within ED/DMFT [11]. Left panel: a,
states, right panel: ¢; states. Solid red curves: spectra derived from G,,,(w) after extrapolating
Y (iwn,) to real w; dashed blue curves: spectra derived by extrapolating G, (iw,,) to real w;
dotted curves: bare density of states.

pending on the details of the input single-particle Hamiltonian [42], as shown in the lower
panel of Fig. 12. A crucial parameter is the ¢, crystal field splitting, A = £, —e.,. As long
as A < —0.1 eV as predicted within LDA, Coulomb correlations within single-site DMFT
consistently yield e pockets, whereas A > 0.1 eV pushes the ¢, bands sufficiently down so
that the pockets disappear [43]. Thus, the fate of the e, pockets is more strongly influenced by
single-particle effects governing the sign and magnitude of A than by correlation effects. Re-
cent quantum chemical calculations, with special focus on the strong Co 3d — O 2p covalency,
yield A ~ 0.3 eV [44], suggesting filled ¢] pockets. On the other hand, surface effects might
also shift the ¢ bands down [45], which could explain surface sensitive ARPES data. More
theoretical and experimental work is needed to clarify the Fermi surface of Najy 3Co0,.

We close this section by discussing the analytical continuation from Matsubara frequencies to
the real-w axis. As pointed out in Section 3, quasi-particle spectra at real frequencies can be
derived by transforming the solid Green’s function G, (iw,,) to real w, or by first transforming
Y (iw,) and then applying Eq. (3) at real w. The comparison shown in Fig. 13 proves that
both methods are consistent, and that the latter scheme retains finer spectral details originating
from the single-particle Hamiltonian. For instance, the ¢; spectrum obtained via Eq. (3) and
Y (w) shows two peaks below Er which evidently are the shifted and broadened density of
states features near 0.4 and 0.8 eV below the Fermi level. Also, the peak close to E' exhibits
some of the fine structure of the single-particle density of states. These details are lost if the
spectrum is instead derived via extrapolation of G, (iw,,) to real w.

9 DMFT for Heterostructures

So far we have discussed bulk properties of strongly correlated transition metal oxides. The
analysis of these properties using photoemission is nevertheless non-trivial because of surface
induced changes of the electronic structure, such as band narrowing due to reduced coordina-
tion, surface crystal field splitting of ¢,, orbitals, lateral surface reconstruction, etc. Frequently,
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surface contributions to photoemission spectra tend to be more correlated, with stronger Hub-
bard satellites than the bulk components. In addition to surfaces, heterostructures made out of
thin layers of transition metal oxides have recently attracted a lot of interest as promising can-
didates for electron-correlation-based devices. In Section 5, we mentioned the example of the
Mott insulator LaTiO3 which exhibits metallicity when it is combined in heterostructures with
the band insulator SrTiO; [33].

Inhomogeneous correlated layered systems have been studied within DMFT by several groups.
Here we briefly discuss a new embedding approach [46] which permits an efficient applica-
tion of DMFT to semi-infinite surfaces and heterostructures. The semi-infinite substrate leads
connected to both sides of the central region of interest are represented via complex, energy-
dependent embedding potentials that incorporate one-electron as well as many-body effects
within the substrates. As a result, the number of layers which must be treated explicitly in the
layer-coupled DMFT equation is greatly reduced compared to previous schemes. The interface
region is assumed to include the first few surface layers of the actual substrates. Both the central
region and the substrates may exhibit strong correlation effects.

Let us consider for simplicity a simple cubic lattice with nearest neighbor hopping ¢. The
interface region has layer index 1 < i < N, the left substrate ¢ < 0 and the right substrate
i > N +1. The DMFT calculation for this heterostructure then consists of three steps: First, the
self-energies ¥, (iw,, ) of the infinite substrate bulk materials are calculated, using the formalism
outlined in Sections 2 and 3. The index « = L, R denotes the left or right substrate. Second,
the embedding potentials for the surface layers i = 1 and ¢ = N of the interface region are
derived from the expression

Sa(kyiw,) = (w—vVw?—4t2)/2 (15)
w = dw, +p—elk) — X, (iwn), (16)
where (k) = —2t[cos(k,) + cos(k,)]. The effective Hamiltonian for the interface region is

given by the N x N matrix
Hij(k,iwy) = —tij + 055[e(k) + 61SL(k, iwy) + din Sr(k, iwy,)]. (17)

The local lattice Green’s function and the corresponding impurity Green’s function are

Giliwn) = Y [iwn + p— H(k,iw,) — D(iw, )] (18)
k
GOJ(Z-(JJ”) = [Gz (iwn)*l + Zz (iwn)]*l, (19)

where H (k,iw,) and X(iw,) denote the matrices H,;(k, iw,) and 0,;3;(iw,). Finally, the
G.i(iwy,) are used as input for the ED/DMFT calculations for each interface layer, providing
the new self-energies X; (iw, ).

Fig. 14 illustrates the layer variation of the quasi-particle weight Z; ~ 1/(1 — Im >;(iwy) /wo)
for a model heterostructure consisting of a simple cubic lattice, with local Coulomb interaction
U = 6 for the weakly correlated metallic substrates and U = 10, 12 for the more strongly
correlated interface region : = 1...4 (energy unit is ¢ = 1). The calculation is carried out
using N = 8 embedded layers, which comprise the central 4-layer film and the two outermost
layers of the substrates. At each layer, the impurity level is surrounded by 7 bath levels in the
ED/DMFT calculation. The quasi-particle weight of the substrate surface layers, Z, 7, is seen
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Fig. 14: Left panel: Quasi-particle weight Z; of the heterostructure consisting of a 4-layer film
(z = 3...6) sandwiched between two semi-infinite metals, calculated using ED/DMFT [46].
Temperature 7" = 0.02. Right panel: Layer variation of spectral distribution at metal insulator
interface, calculated using NRG/DMFT [47]. z = 0 : metallic surface layer; x > 1 : successive
layers in insulator. Inset: low-frequency region.

to be reduced whereas at the surfaces of the poor metal it is enhanced. Evidently, the good or
bad metallic character of one metal spills over into the neighboring metal [46].

Analogous layer-dependent DMFT calculations were recently performed for thick slabs using
NRG as impurity solver [47]. The right panel of Fig. 14 shows the layer variation of the spectral
distribution at a metal insulator interface. Metallic states near £ are seen to form exponential
tails within the Mott gap of the insulator. With increasing U in the insulator, the gap gets
progressively wider and the penetration depth of metallic tails in the insulator decreases rapidly.

10 Cluster DMFT: Organic Salts

The influence of spatial quantum fluctuations on the nature of the Mott transition in strongly
correlated systems is currently of great interest. To address this problem within DMFT it is
necessary to go beyond the single-site or local approximation discussed in Sections 2 and 3
and include Coulomb interactions within clusters rather than single atoms [48, 49]. This exten-
sion allows one to study the momentum variation of the self-energy and examine, for instance,
whether the Mott gap opens uniformly across the Fermi surface, or whether it appears first at
the so-called “hot spots’ (strongly correlated points or regions of the Brillouin Zone) and only
subsequently (at larger U) at “cold spots’ (weakly correlated regions).

A class of materials in which spatial fluctuations can be studied in detail are the layered charge
transfer salts of the x-(BEDT-TTF),.X family, where X denotes an inorganic anion. The elec-
tronic properties of these compounds have been shown to be highly sensitive functions of hy-
drostatic pressure [50, 51]. As a result, the temperature versus pressure phase diagram is re-
markably rich, exhibiting Fermi-liquid and bad-metallic behavior, superconductivity, as well
as paramagnetic and anti-ferromagnetic insulating phases, with striking analogies to the phase
diagrams of transition metal oxides obtained via chemical doping [1].

A feature of particular interest in these salts is magnetic frustration. Since their structure cor-
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Fig. 15: Upper panels: Phase diagrams of Hubbard model for anisotropic and isotropic tri-
angular lattices (t' = 0.8t and ¢’ = t, respectively), evaluated within cluster ED/DMFT for
t = 0.04 eV [53]. Plotted are the first-order metal-insulator phase boundaries as functions
of inverse local Coulomb energy U. In the experimental setup increasing hydrostatic pressure
P implies increasing band width W or decreasing U. Lower panels: Temperature / pressure
phase diagrams for organic salts, x-CI [50] (left) and x-CN [51] (right). The reentrant behavior
observed for x-Cl is absent for x-CN.

responds to an anisotropic triangular lattice, with inequivalent nearest neighbor hopping in-
teractions ¢ and ¢/, long-range magnetic ordering becomes increasingly frustrated for ¢ — ¢,
giving rise to a spin-liquid phase in the absence of symmetry breaking [52]. Such a spin-
liquid phase appears to be realized in xk-(BEDT-TTF),Cuy(CN); (denoted here as x-CN) with
t'" =~ 1.06t, whereas x-(BEDT-TTF),Cu[N(CN),]CI (denoted as x-Cl) with ' ~ 0.75¢ is an
anti-ferromagnetic insulator.

The minimal model Hamiltonian that captures the interplay between geometrical frustration and
strong Coulomb interaction present in the conducting layers of organic salts is

H=— Z tz‘j(C;;CjU —+ HC) + UZ niTnil — W Z CZ—-;CZ‘U, (20)
ijo % o

where the sum in the first term is limited to nearest neighbor sites. The hopping integrals in a
unit cell consisting of three sites are t13 = to3 = t and ;o = t’. The chemical potential . is
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Fig. 16: Left panel: Nearest-neighbor spin correlations in isotropic and anisotropic triangular
lattices for T = 0.05¢, t' = t12, t = t13 = t93. Strong enhancement of spin correlations occurs
for moderate deviations from the isotropic limit. Right panel: Hysteresis behavior of spec-
tral weights A;(0) of cluster sites at Er for anisotropic triangular lattice. Red (blue) curves:
increasing (decreasing) U [53].

fixed at half-filling. Within cluster DMFT the lattice Green’s function is defined as

Gijliwn) =D liwn + p — t(k) — S(iwn)];" (21)

where k extends over the reduced Brillouin Zone. (k) denotes the hopping matrix for the
superlattice and X(iw,, ) represents the non-diagonal cluster self-energy matrix.

Fig. 15 shows the ED/DMFT phase diagrams for the anisotropic and isotropic triangular lat-
tices. The critical temperatures, 7. ~ 50 K are consistent with the measured values for «-Cl
and x-CN. For ¢’ = 0.8t, the phase boundaries separating the Fermi liquid from the Mott insula-
tor show the same kind of reentrant behavior as measured for x-Cl. For instance, at U = 1/3 eV
and T' ~ 50 K the system is a Mott insulator which turns into a Fermi liquid when 7" is lowered
to about 20 K. Further reduction of 7" reverts the system to a Mott insulator, just as seen in the
data. This reentrant behavior is absent in the case of the isotropic triangular lattice. This strik-
ing difference can be understood by analyzing the magnetic correlations < S;..S;. > shown in
Fig. 16. The results demonstrate that spin correlations are strongly enhanced as the geometrical
frustration is suppressed. Thus, ¢ = 0.8t induces a stronger tendency towards magnetic order
than ¢’ = t. At low T, therefore, the electron entropy is suppressed for ¢ = 0.8¢ as compared
tot =t. As T is increased for ¢ = 0.8t, the system lowers its free energy by transforming to a
metal since the entropy of the metal exceeds that of the ordered insulator. At even higher tem-
peratures the system gains entropy of log(2) by transforming back into a paramagnetic insulator.
In the isotropic lattice magnetic ordering is suppressed and the reentrant behavior disappears.

Finally, to illustrate the first-order nature of the metal-insulator transition we show in the right
panel of Fig. 16 the spectral weights at £ = 0 for the three cluster sites as functions of U.
These quantities exhibit hysteresis for increasing and decreasing U, indicating coexistence of
metallic and insulating solutions.
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11  Summary

DMFT provides a combination of (i) high-quality single-electron Hamiltonians for complex
materials consisting of many electrons per unit cell and (ii) accurate many-body formalisms for
the study of complex quantum impurities. Together with increasingly powerful computational
resources, this combination today allows detailed studies of the electronic properties of strongly
correlated systems, such as transition metal oxides and organic salts. As a result, the nature of
the Mott transition in multi-orbital compounds and its remarkable sensitivity to key parameters,
like doping, temperature, pressure, crystal symmetry, etc., are now much better understood than
only a decade ago.

The examples discussed in this lecture demonstrate that finite temperature exact diagonalization
has emerged as a versatile and efficient tool for the study of highly correlated materials. The cor-
relation induced charge transfer between valence orbitals is now a well established phenomenon
found in a variety of systems. In the future, it should become feasible, via generalizations of
DMFT for inhomogeneous systems, to investigate these kinds of effects at neutral and charged
heterostructures consisting of realistic transition metal oxides. Further studies of spatial fluctu-
ations, by combining exact diagonalization with cluster DMFT, will also be of great interest.
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1 Prelude

Transition metal oxides (TMO) exhibit a variety of useful properties, such as ferromagnetism,
ferroelectricity, half-metallicity, high-temperature superconductivity, colossal magnetoresistance
(CMR), and multiferroelectricity. In this Lecture, we present important ingredients for the elec-
tronic structure of TMO and magnetic-related properties.

2 Atomic orbitals in crystal

2.1 Crystal field effect and chemical bonding
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Fig. 1: Possible d-orbital splitting by crystal field effect in ABO3 with perovskite structure.
Crystal structure and atomic orbitals are presented.

The one-electron wavefunctions of atoms or ions are expressed in terms of a product of a radial
wave function R,; and angular wave functions, the spherical harmonics Y},,.

\I’nlm(r) — Rnl(r>}/lm<0; (b) (1)

where n is principal quantum number, [ is angular quantum number and m is magnetic quantum
number. Transition metals have partially filled d (=2, m=—2, —1, 0, 1, 2) states. For simplicity,
we can obtain real angular functions by linear combination of W, (r) as follows,
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(7

There are two types of angular functions, t5, and e,. The ¢y, (xy, yz and zx) orbitals have
large amplitudes between the z, y and z axes, while e, (32 — r? and z? — y?) orbitals have
large amplitudes along these axes. The angular parts of these five wavefunctions are plotted in
Fig. 1. In a free atom or ion, five d-states are degenerate in the energy. However in the crystal,
such degeneracy is lifted up by the electric field derived from surrounding ions, crystal field.
The energy diagram of octahedral crystal field in the perovskite oxides is shown in Fig. 1. We
can intuitively understand that an electron at a transition-metal site can feel different repulsive
potentials due to the oxygen ions.

It is known that the above description of the energy level splitting by a crystal field can explain
experimentally observed results (photoemission spectroscopy etc.) though it is based on a point
charge approximation. However, these results only explain anti-bonding states of transition-
metal d states and oxygen p states. The energy levels reverse if we discuss the bonding states.
Figure 2 shows a schematic diagram of chemical bonding.

<lo00

pdox
pdr /-

Fig. 2: Schematic diagram of energy level and chemical bonding.
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Fig. 3: Possible spin configurations in Co>" ion in cubic crystal field.

2.2 Spin polarization

The ground state of an ion is explained by the well-known Hund’s rule as follows [1].

(i) Arrange the electronic wave function to maximize S.

(i1) Arrange the electronic wave function to maximize L.
The first rule minimizes the Coulomb energy because of Pauli exclusion principle. The second
rule minimizes also the Coulomb energy, because electrons with the same rotation direction
avoid each other. These Hund’s rules are not always applicable to ions in a crystal. The reason
lies in the lift of the degeneracy by the crystal field and chemical bonding. For example, the
Co®*(d®) ion has the possibility of three spin arrangements in perovskite LaCoQs, (i) High spin
S = 2, (i1) Intermediate spin S' = 1, (iii) Low spin .S = 0 shown in Fig. 3. The energy levels are
different for up-spin and down-spin as well as for high-spin and intermediate-spin case. These
differences in energy levels for different spins are called spin polarization. The difference in the
number of up-spin and down-spin electrons becomes the local spin moment of an ion. Figure 4
shows the schematic diagram of the electronic structure and oxygen coordination of different
Co?T sites in SrCogO1;. The octahedral site is the same as in figure 1. However, in the trigonal
bipyramid case, the symmetry is not octahedral and the notation used is different from e -to,
notation. These differences in the crystal field effect in this system gives rise to a novel half-
metallic antiferromagnetic electronic structure.

3 Exchange interactions

3.1 Superexchange

Many of the transition-metal oxides have a ground state which has a ferromagnetic or antifer-
romagnetic order. To discuss the magnetic stability, the interaction between each pair of ions (2
and 7) is often represented by a Heisenberg model.

1
E = —§;Jijsi~sj, (8)

where the exchange parameter J;; is positive for ferromagnetic, and negative for antiferromag-
netic interactions. The microscopic origin of .J;; is often derived by a perturbation approxima-
tion to the Hubbard model given approximately by

ty

JijO(—U,
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Fig. 4: Crystal structure of SrCogO11 and schematic view of electronic structure for ferromag-
netic metal and antiferromagnetic half-metal.

where t.¢ 1s an effective hopping integral between transition-metal ions, U is on-site Coulomb
interaction. In the transition-metal oxides, the exchange interaction between magnetic metal
ions is mediated by a non-magnetic oxygen. This origin of exchange interaction is called su-
perexchange. The effective transfer integral ¢ is expressed by the energy difference between
the transition-metal d orbital and oxygen p orbital, A, and the hopping integral between tran-
sition metal and oxygen ¢,4 as follows,

teff X Ld (10)

Figure 2 shows that there are two types of overlap between p orbitals and d orbitals, pdo and
pdm which mainly contribute to hopping integrals. The sign and magnitude of the superex-
change coupling parameter depend on the electronic structure and the geometry of magnetic
ions M and oxygen ions. There are rules developed by Goodenough [2, 3] and Kanamori [4],

A
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Ty t2g g i J
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(a) Ferromagnetic Superexchange (b) Antiferromagnetic Superexchange (c) Double-exchange

Fig. 5: Schematic diagram of exchange interactions.
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so called Goodenough-Kanamori rules [5].

Rule 1: The hopping of electrons between ions with the same d orbitals via oxygen
atom give antiferromagnetic exchange.

(1) pdo type orbitals with 180° M-O-M angle gives the largest superexchange case.
(ii) pdr type orbitals with 180° M-O-M angle gives antiferromagnetic coupling.
(iii) pdo and pdm case with 90° M-O-M angle gives strong antiferromagnetic cou-

pling.

Rule 2: Combination of different atomic orbitals gives ferromagnetic exchange.
(iv) pdo and pdrm with 180° M-O-M angle, there is strong ferromagnetic coupling.

3.2 Double exchange and antisymmetric exchange

There are ferromagnetic exchange interactions which are induced by the carrier in the metallic
compounds of mixed valency. This exchange interaction called double exchange(DE) [6]. The
magnitude of the exchange coupling constant depends on ¢;;, the transfer integral of carriers
and the carrier concentration. When the localized spins S; and S; are aligned parallel, ¢;; is
maximum and is expressed by tgj. When S; and S are antiparallel, ¢;;=0. More generally,
when S shares an angle ¢;; with S;, the transfer integral for carriers of spin 1/2 is 6;;,

ti]’ = t% COS(QZ']'/Q) (11)

The ferromagnetic coupling between carriers and the local magnetic moment is known as
Hund’s coupling Jy as mentioned in section 1.2 and shown in Fig. 5(c). The mechanism of
double exchange is explained by kinetic energy gain, because of the relative spin angle of local
moment. For example the canted antiferromagnetism in La; _,Sr,MnO3 (LSMO) is explained
by the double exchange mechanism. We also discuss the canted antiferromagnetism of LSMO
from first principles in the Section 3.2. The energy of the double exchange which contributes to
total energy is given as follows,

:——Zt cos(6;5/2) (12)

where x is carrier concentration. The angular dependence of the relative local magnetic mo-
ments differ between double exchange (DE) and superexchange (SE) terms.

Besides the double exchange mechanism, there is other exchange interactions which give raise
to canted antiferromagnetic or weak ferromagnetic ground states. The exchange interaction
is known as a antisymmetric exchange, or also as the Dzyaloshinskii-Moriya interaction and
anisotropic exchange [7, 8]. The antisymmetric exchange is derived by virtual processes subject
to the spin-orbit interaction —\l - S and the Coulomb interaction. It is known that the energy
gain due to antisymmetric exchange has following expression,

The vector D vanishes when the crystal field has an inversion symmetry with respect to the
center between the two magnetic ions.
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3.3 Exchange strictions

The exchange interaction depends on the atomic structure, bond distance, bond angle etc. Ac-
cordingly, the system may have energy gain if the atomic structure changes. Every mechanism
of exchange has the possibility to contribute to an exchange striction mechanism for magneto-
electric or magnetoelastic properties.

Here we demonstrate a simple one-dimensional case of superexchange striction [9, 10].

E,, = ﬂ@msy&+gw—mf (14)
d?ﬁ = —J'(r)S1- Sy + kK(r —rp) 15)
Wlth J12(7”) ~ J12(7"0> + J/<T0>(7” — 7"0) (16)

where .J12 > 0 for ferromagnetic coupling and J;, < 0 for antiferromagnetic coupling, « is the
force constant of the harmonic potential, r the is bond length of magnetic ions. From Egs. (14),
(15) and (16) we obtain an atomic displacement by exchange striction as follows,

or=r— To = lJ/<7’0>Sl . 52 (17)
K

Clearly J'(rg) > 0 for antiferromagnetic configuration and .J'(ry) < 0 for ferromagnetic con-
figuration. The ground state gives always shorter bond length than excited states. The total
energy for a small atomic displacement 0 is given by,

1 !
Eior ~ —J12(7“0)51 -8y — %J (7“0)2(51 : 52)2 (18)

Above discussion can be extended to higher dimensions and the bond length r can be replaced
by a generalized coordinate. The microscopic origin of improper ferroelectricity in collinear
multiferroics may originate from this superexchange striction.

3.4 First-principles calculation of exchange coupling parameters

Using the Green function technique [11, 12], we have calculated parameters of the inter-atomic
exchange interaction following the expression,

™

e e
%:—/cmmm«q%gm) (19)

where G;?l in Eq. (19) is a block of real-space Green function with the site indices ij; V; =

ViT — V;l, T'r runs over the localized orbital indices. The method are implemented in oPENMX
code [13]. To discuss the filling dependence of exchange interactions, we have calculated ex-
change coupling parameters for different Fermi energies as discussed by Belhadji et al. [14].
Figure 8 shows the density of states of LaMnOj3 and the filling-dependence of the exchange-
coupling constants based on the rigid band approximation. These results can explain qualita-
tively the magnetic ground state of isostructural orthorhombic La) O3(M =Ti-Fe).
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Fig. 6: Fartial density of states of Mn atom and energy dependence of nearest neighbor ex-
change coupling constant J;; in ab plane of LaMnOs.

4 The case of perovskite manganite

4.1 RMnOj;(R: rare earth)

RMnOj; systems exhibit a distorted perovskite structure of GdFe(3-type. With changing from
La with a large ionic radius to the small ionic radius of Er, the bond angles of Mn-O-Mn de-
crease and the GdFeOs-type distortions increase. It was reported on ground of experiments [15],
that the magnetic ground state changes from A-type antiferromagnetic (AFM-A) (Fig. 7(a))
to incommensurate magnetic (spiral) state (Fig. 7(d)) to E-type antiferromagnetic (AFM-E)
(Fig. 7(c)).

In this section, to explain theoretically the correlation between the lattice distortions and the
magnetic structure, we investigate the exchange interaction between the nearest-neighbor Mn
sites. We perform first-principles collinear and non-collinear density-functional calculation for
perovskite manganites RMnOs (R = rare-earth elements) varying R. To explore the mechanism
for the appearance of the non-collinear magnetic structure, we calculate the exchange interac-
tions in the nearest-neighbor and next nearest-neighbor Mn sites.

First, we predicted theoretically the transition of the magnetic ground state by focusing on the
exchange interactions between the nearest-neighbor Mn sites. In RMnOg3, the double degener-
acy of the e, state of Mn®' ion is lifted by the Jahn-Teller effect. The electron preferentially
occupies the 32?2 — r?(3y? — r?) orbitals. The magnetic ordering is caused by the superex-
change interaction between Mn sites. Zhou and Goodenough proposed that the magnetic phase
transition was induced by change in the nearest-neighbor exchange interaction [16]. According
to their paper, 322 — r2(3y? — r?) and y? — z?(x? — 2?) orbitals mix with increasing GdFeO4
distortions and the ferromagnetic interaction for e, orbital decrease. There is the competition
between the antiferromagnetic interaction for ¢, orbital and ferromagnetic interaction for e,
orbital.

If we include the GdFeOs-type distortion, the occupied and unoccupied wave function com-
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Fig. 7: (Color). The magnetic structure of RMnOs. Black arrows and large gray spheres denote
the spin and Mn atoms, respectively. Small gray and red spheres denote the rare earth and O
atoms, respectively. All magnetic structures in this figure consist of AFM coupling along the
c-axis. (a), (b) and (c) are AFM-A, AFM-G and AFM-E, respectively. (d) describes the spiral
magnetic structure. The rotational angle is the 45° in this structure.

posed of e, orbitals in the Mn-1 site and Mn-2 site are expressed as follows,
o 0 02 o 0,
vy = Cos§‘3$1—r1>+sm§’y1 _Z1> (20)
0 N
|y) = cos 3 ‘x% - z§> — sin 3 ’3y§ - r§> 20

6 describes the material depended lattice distortions. For the non-distorted lattice =0. The
ferromagnetic superexchange for e, orbital is expressed as follows,

0 0 1
S = |cos® 2 (3af —ri |H| a5 — z3) — sin® B (yi — 21 |H|3y; —r3) ’2A
JT
2
Legr (22)
Ajr’

Ayt indicates the energy gap between 322 — r?(3y* — r?) and y* — 2%(2® — 2?) orbitals induced
by the Jahn-Teller effect. The antiferromagnetic superexchange for the e, orbital is expressed

as follows, , ,
1 ters ters )
Jp == + . 23
AF T 9 (Aex + Ajrdgo Aex + Ayr 23)

A indicates the exchange splitting. Schematic diagrams of the superexchange between the
nearest-neighbors are shown in Fig. 9. The exchange interactions for e, in the nearest-neighbor
is expressed as follows,

Jo = Jfn = IR 24

terr in Eq. (22) decreases with increasing distortions, while Ajp increases, because the Jahn-
Teller effect increases with decreasing ionic radius. As a result, Jg,; decreases with increasing
distortions. J{p becomes stronger with orbital mixing induced by distortions. The effective
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Fig. 8: (Color). Schematic density of states (DOS) to explain the exchange-interaction mech-
anism between nearest-neighbor Mn sites due to e, orbitals including Jahn-Teller distortion.
Blue and red DOS are corresponding to 32> — r?(3y* — 1?) and y* — 2%(z* — 2?) states, re-
spectively. (a) and (b) denote ferromagnetic interactions. (c) and (d) denote antiferromagnetic
interactions. (a) and (c) denote the DOS excluding the GdFeOs-type distortion, (b) and (d)
denote the DOS taking the GdFeOs-type distortion into account.

exchange interaction between nearest neighbors for e, and ¢, orbitals is known according to
Zhou and Goodenough [16]: According to Eq. (24), J; decreases with increasing distortions and
the ferromagnetic interaction becomes weak. Since non-collinear magnetism can arize due to
the competition between exchange interactions between ions at different neighbors, and since J;
decreases with increasing distortions, it is predicted that non-collinear magnetism appears by the
spin frustration with the competition between .J; and .J>. Thus, to explore the appearance of non-
collinear magnetism, we considered also the next nearest-neighbor interaction J,. When AFM-
A is the magnetic ground state, the contribution of J; is large. However, because of the fact that
the antiferromagnetic .J, contributes more than .J; with increasing distortions, a competition
between .J; and .J; is induced, and hence long-period noncollinear magnetic structure (spiral
state) can be stabilized. We performed first-principles calculation for RMnOj3 (R = La~Er) and
compared the total-energy differences among different magnetic structures. ¢ is the Mn-O-
Mn bond angle, which decreases from La to Er. The magnetic structures were restricted to the
AFM-A, AFM-G, AFM-E, and the spiral state (SP) shown in Fig. 7. Although we calculated the
ferromagnetic (FM) and AFM-C state, both magnetic structures were not stable at any range of
¢. Figure 9 shows the total-energy difference per Mn atom for the AFM-A order as a function of
¢. According to the experiment by T. Kimura ez al. [15], AFM-A is ground state in the range of
148° < ¢ < 156°, magnetically incommensurate in the range of 145.5° < ¢ < 148°, and AFM-
E is ground-state in the range of ¢ < 145.5°. Even though we use a La pseudopotential for
all R in RMnOj3 with the respective experimental crystal structures, the transition of magnetic
ground state is consistent with experimental results. This means that the lattice structures play a
crucial role in determining the magnetic ground state. AFM-A is stable in the range of 153° <
¢ < 155°, Sp-45° is stable in the range of 148.5° < ¢ < 153°, and AFM-E is stable in the
range of ¢ < 148.5°. According to the experiment by T. Arima et al. [17], it was reported
that a SP state of about 45 degree appears. Our first-principles results are consistent with the
experimental result.
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Fig. 9: (Color). The total-energy difference (in meV/Mn) from the AFM-A as a function of ¢.
Red squares, green circles, blue triangles and pink diamonds denote the AFM-A, AFM-E, SP-
45° and SP-90°, respectively. The inset shows the total energy difference between AFM-E and
SP-90°. The lines are guide to the eye.

4.2 La;_,Sr,MnO;

We show our first-principles results for the double exchange mechanism in carrier-doped per-
ovskite manganite [18]. Perovskite manganites La;_,Sr,MnO3 (LSMO) exhibit novel physical
properties such as colossal magnetoresistance [19] and half-metallicity [20]. These novel phys-
ical properties originate from a variety of magnetic configurations in LSMO such as ferromag-
netic (FM), A-type (inter-plane antiferromagnetic (AFM) and intra-plane FM orders), C-type
(inter-plane FM and intra-plane AFM orders) and G-type (inter-plane AFM and intra-plane
AFM orders) AFM states (see Fig. 10 (a)). These magnetic states are controlled by the carrier
concentrations and lattice distortions in LSMO [21, 22]. An experimental study revealed that
the magnetic phase changes as AFM-A — FM — AFM-A — AFM-C — AFM-G states with
increasing carrier concentrations in LSMO [23].

The magnetic states around the phase boundary in carrier-doped manganite have been exten-
sively discussed on the basis of the long-range ordered noncollinear spin-canting magnetic
states or the coexistence of AFM and FM states, i.e., phase separation. While the spin-canting
magnetic state was suggested as a possible ground state with competition between magnetic
interactions [6, 24, 25], the FM—AFM phase separation was also suggested as a stable phase
by an experimental study and model calculations [26, 27, 28]. Despite the extensive stud-
ies on the magnetic state around the phase boundary, the issue remains unresolved. Simi-
lar problems are encountered in the interface of artificial superlattices [29, 30, 31] such as
(LaMnOs),,,/(StMnOs),, where inhomogeneous carriers are introduced. To design magnetic
states in the artificial superlattice, a detailed systematic study of the carrier-dependence of mag-
netism in LSMO is of great importance.

We have performed first-principles calculations on La;_,Sr,MnO;3 (0.0 < x < 1.0) by the
noncollinear density functional theory (DFT) [32, 33]. A generalized gradient approximation
(GGA) [34] is adopted to determine the exchange correlation potential after the diagonalization
of the noncollinear spin-density matrix. The norm-conserving pseudopotential method [35]
with a partial core correction [36] is used and wavefunctions are expanded by a linear com-
bination of multiple pseudo-atomic orbitals (LCPAO) [37, 38]. We neglected the spin-orbit
interactions in all calculations. The calculations were done for a four-formula unit cell, i.e.,
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Fig. 10: (a) The collinear magnetic structures of La,_,Sr.MnQs. (b) The total energy difference
per Mn atom from the stable state as a function of x. The red squares, green circles, blue
triangles and pink diamonds denote the FM, AFM-A, AFM-C and AFM-G states, respectively.

The lines are guide to the eyes [18].

20 atoms in the unit cell. The hole carrier doping x is performed by a shift in the Fermi level
and a uniform background charge is introduced to balance the charge neutrality of the system.
Noncollinear spin orientations are fixed by using constrained DFT, where the penalty functions
are introduced in the total-energy functional [39, 40]. All the above methods are implemented
in the opENMX code [13]. We use the atomic coordinates of orthorhombic LaMnO3 (x = 0.0)
and the cubic StMnOj3 (z = 1.0) determined by experimental studies [41, 42]. In the region of
0.0 < x < 1.0, we assumed that the lattice structure is continuously changed from LaMnOj to
SI‘MI’lOg.

We study the stability of the collinear magnetic states in LSMO. The calculated collinear mag-
netic states are the FM, AFM-A, AFM-C and AFM-G states (Fig. 10 (a)). Figure 10 (b) shows
the total energy difference per Mn atom from the stable state as a function of x. When = = 0.0
and 0.5 < x < 0.8, the AFM-A state becomes stable. The FM state becomes stable in the
region of 0.1 < x < 0.5. The AFM-C state becomes stable around z = 0.8. The AFM-G state
becomes stable in the region of 0.8 < x < 1.0. The AFM order becomes favorable with in-
creasing x in the region of 0.5 < x < 1.0. This result is consistent with the previous theoretical
and experimental studies [22, 23].

We extended the calculation of magnetic states for noncollinear configurations, as shown in
Fig. 11 (a). In Fig. 10, x = 0.5 is the carrier concentration at which the total energies of the FM
and AFM-A states are nearly degenerate within 1.0 meV/Mn. Figure 11 (b) indicates the total
energy difference per Mn atom from the stable state as a function of 6. @ is the inter-plane spin-
canting angle, i.e., # = 0° and € = 180° correspond to the FM and AFM-A states, respectively.
We found that the spin-canting magnetic state (§ = 105°) is stable for z = 0.5.

We also investigated the carrier dependence of the noncollinearity in the spin-canting magnetic
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Fig. 11: (a) The spin-canting magnetic structure of La,_,Sr.MnOs (LSMO). 6 is the spin-
canting angle between the inter-plane Mn sites. (b) The total energy difference per Mn atom
from the stable state as a function of 0 in LSMO (x = 0.5). (c) The total energy difference per
Mn atom from the stable state in the parameter space as a function of hole doping x (0.3 <
x < 0.6) and 0 (degree). The change from blue to red in the color bar on the right-hand side
represents the increase in the total energy difference. The lines serve as a visual reference [18].

state of LSMO (0.3 < x < 0.6). Figure 10 (c) shows the magnetic phase stability as a function
of x and 6. AFE denotes the total energy difference per Mn atom from the stable state. The
spin-canting magnetic state is stable in the region of 0.3 < x < 0.6. With increasing x, stable 6
continuously increases from the FM (6 = 0°) state and AFM-A (6 = 180°) state.

We discuss the stability of noncollinear magnetism around the magnetic phase boundary. It is
understood that the carrier-induced magnetism in perovskite manganites is governed by the dou-
ble exchange (DE) interaction [5, 6, 43]. The spin-canting magnetic state has been explained by
de Gennes [6] in terms of the DE mechanism. According to his theory, in addition to the AFM
superexchange (SE) interaction, the FM interaction is caused by electron hopping from a half-
filled e, state to an empty e, state with Hund’s coupling. Then, the spin-canting magnetic states
are stable because of the competition between the FM DE and AFM SE interactions in LSMO.
Although de Gennes restricted his discussions to low carrier concentrations, Solovyev and Ter-
akura extended de Gennes’s theory to a wide range of carrier concentrations [24] and predicted
that the spin-canting magnetic state may be stable around the half-doped concentration (x =
0.5). Our first-principles results are consistent with this prediction, and the spin-canting mag-
netic state is stable in the region of 0.3 < 2 < 0.6. We suggest that a noncollinear magnetic
state may appear in a wide range of hole-doped perovskite manganites.

We discuss the effect of lattice distortions at x = 0.5. We have performed a calculation of the
cubic LSMO with an averaged lattice constant. The total energy difference between the FM
and AFM-A states is 9.8 meV/Mn at + = 0.5. The corresponding energy difference in the
orthorhombic structure is 0.8 meV/Mn. We predict that the spin-canting magnetic state is more
stable in the orthorhombic structure than in the cubic structure. We also discuss why the total
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energy difference is large in the cubic structure. We attribute this difference to a decrease in
the AFM SE interaction at the inter-plane. The average lattice constant in the cubic structure
(3.873 A) is larger than that in the orthorhombic structure (3.826 A). The larger lattice constant
leads to a decrease in the overlap between the wavefunctions of the inter-plane Mn atoms, i.e.,
the AFM SE interaction decreases at the inter-plane. Therefore, the lattice distortion may affect
the stability of the noncollinear magnetic phase. We propose that the control of the noncollinear
magnetic states is possible by the superlattice composition.
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1 Introduction

Multiferroic materials [1] are in broad sense defined as materials possessing, in a single phase,
two or more ferroic orders:

e Ferromagnetic materials are characterized by a spontaneous magnetization, switchable
hysteretically by an applied magnetic field. A lattice of a magnetic atoms can also be
formed in a way that all moments are aligned, but neighboring moments point in opposite
directions. If the resulting magnetization in such a lattice is zero, the material is antifer-
romagnetic; in the case of a non-vanishing resulting magnetization, we are dealing with
a ferrimagnetic material.

e Ferroelectric materials are characterized by a spontaneous electric polarization, switch-
able hysteretically by an applied electric field. If a material possesses ordered dipole
moments which cancel each other completely within each crystallographic unit cell, it is
said to be antiferroelectric.

e Ferroelastic materials are characterized by a spontaneous deformation, switchable hys-
teretically by an applied stress.

e Ferrotoroidic materials are the newest addition to the family of ferroics. They are char-
acterized by an order parameter which is taken to be the curl of a magnetization or po-
larization. It is anticipated that this order parameter, referred to as toroidization [2], is
hysteretically switchable.

spatial inversion time inversion

magnetic moment

dipole moment

p -p p

Fig. 1. Symmetry of a dipole (p) and a magnetic (m) moment: spatial inversion reverses the
direction of the dipole, but leaves the magnetic moment unchanged; on the contrary, time inver-
sion switches the magnetic moment and leaves the dipole unchanged.

Ferroic materials have certain symmetry properties which originate in the nature of the order
parameters characterizing them. Let us observe how the spatial and time inversion act on the
local magnetic and dipole moment (Fig. 1). Local magnetic moments originate in spins of
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the electrons and in orbital angular momenta. Their symmetry properties, however, can be
understood from a classical example of the magnetic moment of a current loop: spatial inversion
will map the current vector i to its antipode on the current loop and will change its direction,
leaving so the magnetic moment unchanged; time inversion will reverse the direction of the
current and the magnetic moment will also be reversed. A dipole moment is produced by
spatially separated positive and negative charge. Spatial inversion will obviously reverse its
direction; since the charge separation is static in time, the dipole moment will be invariant
under the time reversal. The symmetry of ferroic materials, summed up in Fig. 2, reflects these
simple observations.

spatial inversion time inversion

ferromagnetic V) (X
ferroelectric @ 0
ferroelastic V) &
ferrotoroidic (X (X

Fig. 2: Symmetry of ferroic materials; note that a multiferroic which is at the same time ferro-
magnetic and ferroelectric cannot have either of the inversion symmetries.

Order parameters which characterize ferroic materials can often exhibit weaker or stronger cou-
pling to different external fields (Fig. 3):

Magnetoelectric coupling describes the change of magnetization (polarization) of a material
when an external electric (magnetic) field is applied.

Piezoelectric coupling is what brings change to polarization (deformation) when an external
stress (electric field) is applied.

Piezomagnetic coupling changes magnetization (deformation) upon application of stress (mag-
netic field).

Both piezomagnetism and piezoelectricity describe changes of order parameters which are lin-
ear functions of applied fields. Changes in deformation which are quadratic functions of applied
magnetic (electric) fields are caused by the phenomenon of magnetostriction (electrostriction).
It should be noted that strong couplings need not be a characteristic of a multiferroic material,
neither are they restricted to multiferroics [3].

Although the broad definition of a multiferroic material involves coexistence of any two (or
more) ferroic orders, the term multiferroic is in practice used when referring to a material which
orders magnetically and ferroelectrically in a single phase (we will also restrict ourselves to this
meaning from now on). Such materials offer new possibilities to information storage applica-
tions, such as the possibility of encoding information in the magnetization and the polarization
state independently, in a single multiferroic element. Experimentally, four-state memory has al-
ready been demonstrated [4] (the current technology uses a 2-state, i.e. 2-bit, memory). Using
materials where magnetization and polarization are coupled, it was suggested that information
could be written by electric and read out by magnetic field. In this way, a couple of important
problems one meets in the developing MRAM (magnetic random access memory) and FeERAM
(ferroelectric random access memory) would be avoided. Namely, a large, spatially localized
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magnetic field electric field stress

magnetoelectric

maghnetization direct coupling coupling

piezomagnetism

electric magnetoelectric

polarization coupling direct coupling piezoelecticity

deformation piezomagnetism piezoelecticity direct coupling

Fig. 3: Coupling of order parameters to applied external fields.

magnetic field would be needed for writing in a MRAM, while the readout action of a FeERAM
destroys the read information. Due to the multifunctional character and easy manipulation of
possible devices based on ferroelectric magnetic materials, it is exactly this class of multifer-
roics that has attracted most of the attention in the recent years.

2 Ferroelectricity and ferromagnetism

While ferromagnetic materials have been known for a long time, the study of the first material
identified as a ferroelectric, the Rochelle salt [5, 6], started only a bit over a century ago. The
observed spontaneous polarization which can be reversed when an external electric field is
applied, led to the term ferroelectricity, by analogy with the known ferromagnetism.

Both classes of materials are characterized by hysteresis loops (Fig. 4a). In case of a ferro- or
ferrimagnet the hysteresis connects the applied magnetic field H and the magnetization M (or
magnetic induction B). In case of a ferroelectric there is a hysteresis between the applied elec-
tric field E and the polarization P (or the dielectric displacement D). The work done in reversing
the magnetization (polarization) is in both cases given by the area enclosed by the hysteresis. A
common feature of ferromagnetic and ferroelectric materials is the formation of domains, areas
with unidirectional magnetization (polarization), which is why the as-prepared samples often
lack a measurable macroscopic ferroic order; this state corresponds to the coordinate origin in
Fig. 4a and to the middle panel of the Fig. 4b. When a sufficiently strong external magnetic
(electric) field is applied, the sample reaches the saturation magnetization M (polarization P,)
(Fig. 4b, right). When the field is reduced to zero after saturation, the magnetization (polariza-
tion) decreases from Mg (P,) to M, (P,), called the residual magnetization (polarization). The
reversed field needed to reduce the magnetization (polarization) to zero is called the coercive
field (H,, E.).

Another phenomenological similarity is that both ferromagnets and ferroelectrics have a char-
acteristic Curie temperature 7, beyond which the magnetic moments (electric dipoles) are no
more aligned and the material is in a paramagnetic (paraelectric) phase. In both classes of
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@) M., P.
M, P,

L] g

Fig. 4: (a) Hysteresis loop in a ferromagnet or a ferroelectric. (b) Domains in a ferromagnet
or in a ferroelectric; middle: disordered, without an external field; left/right: fully ordered, at
the saturation points.

materials, the ferroic order appears because it is energetically favorable, but this is where the
analogy ends. The physical origins of the two phenomena are quite different. While magnetism
originates in the interaction of electronic spins, ferroelectricity involves lattice distortions due
to the interaction between electrons and nuclear displacements (vibronic interactions).

3 Ferromagnetism

Many properties of ferromagnets can be explained by two phenomenological theories, the
Curie-Weiss localized moment theory and the Stoner band theory of ferromagnetism. Both
theories show that localized electrons, such as transition metal d or rare earth f, are the basic
requirement for magnetism to occur. This is an important point and we will come to it later
again, when considering the conditions for simultaneous existence of magnetism and ferroelec-
tricity in multiferroics.

Curie-Weiss theory developed on a postulate of Weiss [7] that there is an internal molecular
field which acts on the magnetic moments in ferromagnetic materials and aligns them. Today
this molecular field is understood to originate in the quantum mechanical exchange energy: due
to the Pauli principle, electrons with parallel spins will stay away from each other, lowering in
this way their energy due to the smaller Coulomb repulsion; exchange, however, does not limit
the proximity of two electrons with antiparallel spins. Above the ordering temperature 7¢, the
alignment energy of the molecular field becomes smaller than the thermal energy &7 and the
directions of the magnetic moments become random, i.e. the material shows a paramagnetic
behavior. The Curie-Weiss law,
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Metal Na Al Cr Mn Fe Co Ni Cu Pd Pt

n(Er) [(eV)™'] 0.23 0.21 0.35 0.77 154 172 202 0.14 114 0.79
I [eV] 1.82 122 0.76 0.82 093 099 1.01 0.73 0.68 0.63
In(ER) [eV] 041 0.25 0.27 0.63 1.43 1.70 2.04 0.11 0.78 0.50

Table 1: Bulk density of states n(Er) at the Fermi energy (EF) as calculated from nonmagnetic
calculations, the Stoner parameter I, and the product of both, In(Er). All results are obtained
with the density functional theory in the local density approximation [9, 10].

C
— 1
T ®

where Y is the magnetic susceptibility, C material-specific Curie constant and T temperature,
successfully predicts the experimentally observed fact that at the ordering temperature, 7' = T,
the magnetic susceptibility in many ferro- and antiferromagnetic materials diverges. However
this theory also predicts magnetic moments on each atom to be formed by an integer number
of electrons and this value should remain the same irrespective on whether the material is it a
ferro- or antiferromagnetic state. Neither of the two is observed experimentally. The discrep-
ancy is especially striking in metallic systems, where the Stoner band theory of ferromagnetism
provides a better description.

X:

Stoner theory [8] expresses a competition between the exchange interaction and the kinetic
energy, where the former is described by the exchange integral 7, and the latter by the density
of electronic states at the Fermi energy n(Er), in the non-magnetic state. The exchange energy
will again act as an aligning force on the electronic spins. However, the electrons which have to
stay far away from each other will have an increased kinetic energy, since each of them will be
more localized in space, much like an electron in a potential well the energy of which increases
when the well width is reduced.

The exchange integral I is the measure of energy gained by aligning the electronic spins. The
kinetic energy is higher for broad, dispersive bands, i.e. for a low density of states n(£). The
higher the value of n( Er), the lower is the kinetic energy of electrons at the Fermi level. Thus,
what we need for magnetism to appear is a large 7 and a high density of states n(Eg). This
analysis is summed up in the simple Stoner criterion for ferromagnetism:

In(Ep) > 1. (2)

Table 1 lists the exchange integral /, the local DOS at the Fermi energy n(Er) derived from
nonmagnetic calculations and the product In(Er) for a number of elemental metals. It shows
that the Stoner condition for ferromagnetism is only fulfilled for Fe, Co, and Ni, precisely those
metals that show itinerant ferromagnetism.

Predicting the magnetic ground state of a magnetic system can be a highly nontrivial problem.
In cases, for example, where competing exchange interactions between neighboring atoms exist,
a multitude of possible spin-structures arises. A relatively simple model often used to describe
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the magnetism of complex spin structures is the classical Heisenberg Hamiltonian,

H=-> J;M;-M;. 3)
i%

The magnetic moments localized on the lattice sites 4, j are considered as classical vectors M,
with the assumption that their magnitudes M are constant. The exchange interaction between
the magnetic moments is described by the pair interaction J;;. From the first-principles calcu-
lations one can extract the pair interactions and then e.g. use a Monte Carlo method to obtain,
from the Hamiltonian (3), the magnetization of the material as a function of temperature and
determine the T¢. In localized spin systems the J;; can often be restricted to the ferromagnetic
(J1 > 0) or antiferromagnetic (/; < 0) nearest-neighbor (n.n.) interaction, i.e. J;; = 0 for all 7,
j, except for J,,,,. = J;. Also in itinerant magnets .J; often dominates over the rest of the further
distant pairs. However, in this case the electrons that are responsible for the formation of the
magnetic state participate in the formation of the Fermi-surface and hop across the lattice. Thus,
the validity of the Heisenberg model here becomes questionable, although usually reasonable
values of ordering temperatures T are obtained.

4 Ferroelectricity

In contrast to the structural phase transitions that involve significant diffusion of atoms, the
ferroelectric transition belongs to the displacive phase transitions, which only require small
collective displacements of individual atoms (amounting to fractions of the nearest neighbour
interatomic distances). Displacive transitions occur spontaneously and reversibly at specific
pressure and temperature conditions.

4.1 Displacive phase transitions

A well-studied structure which presents a series of different displacive phase transitions is that
of the perovskite materials with a general chemical formula ABX;3 [11, 12, 13]. A and B are
cations of different sizes, while X is an anion which bonds to both. This structure is adopted
by many oxides ABO;3 (Fig. 5 left), where the Oxygen atoms form octahedra in the centers of
which the B-site cation is positioned, while the A-site cation occupies the cube corner positions.
For example, SrTiO3 undergoes a displacive phase transition where the TiOg octahedra make
a small rotation about the [001] axis. Similarly, in CaTiO; and MgSiOs, the octahedra tilt by
different amounts about all three axes. Another type of displacive phase transition is seen in
PbTiOs [14, 15], where the Pb?* and Ti** cations move off-center along [001], generating a
ferroelectric phase transition (Fig. 5 right) . This results in a tetragonal unit cell with ¢ > a,
where c¢ is the hight of the unit cell, while a is the lattice parameter in the plane perpendicular
to the shift.

The ferroelectric phase transition in BaTiO3 [16, 17], however, is peculiar: although it appears
to be very similar to PbTiOs, the behavior is qualitatively different: here the Ti** ions appear to
occupy a central site in the high temperature cubic phase only on average, whereas in practice
that site is always a potential-energy maximum. The potential-energy minima for the Ti**+
cations are located away from the central site along the eight (111) directions, so that in the high-
temperature phase the Ti** cations are hopping among the eight different sites. The ferroelectric
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centrosymmetric ferroelectric

Fig. 5: Perovskite structure ABOs in its centrosymmetric phase (left) and in one of possible
ferroelectric phases (right).

phase transition occurs when the Ti%* cations begin to localize preferentially in the sites in the
e.g. positive ¢ direction. There are still four of these sites, so there are subsequent phase
transitions when the material is cooled, till the Ti** cations all occupy the same one site in the
unit cell.

Often, only the first type of phase transitions if tagged displacive, while the phase transitions
like the one taking place in BaTiO; are referred to as the order-disorder transitions. It is not
always easy to draw a line between the two. We will consider a simple model to investigate the
factors which influence the nature of a transition [18]. The model consists of a 1-dimensional
array of atoms, interacting with each other via harmonic forces, represented in Fig. 6 by the
springs connecting the atoms. We will assume that each atom feels a double-well potential,
without going into details of origin of such a potential shape (we will deal with this question
later). For the moment, let us consider how our system is influenced by the two parameters
which characterize it: one is the depth of the potential well 14, and the other is the strength of
the interaction between neighboring atoms (harmonic force constant) .J. If the displacement of
each atom 7 from the center of the potential well it is in is u;, the local double-well potential can
be expressed as

1 1

where the parameters k, and k4 are positive constants. The energy of each atom (of mass m)

J

Vo

Fig. 6: A one-dimensional model of a crystal which undergoes a displacive phase transition.
Each atom is in a double-well potential of depth 1{, and interacts with its neighbors by harmonic
forces represented by springs of stiffness J.
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also includes the kinetic term, 7; = T'(u;) = mu? /2 and the harmonic energy term due to the
interactions of the atom i with its neighbor j, W;; = J(u; — u;)?/2, i.e. the Hamiltonian H of
the system is

1 2 1 4 1 2
i i 1#£] i i i#£]
Let us now see what the relative strengths of the two last terms in Eq. 5 can tell us about the
system. The minima of the potential 4 are at u; = +ug, Where u2 = ky/k,, yielding the depth
of the potential well,
1 2

(we drop the subscript ¢ since all the potential wells of the model are the same). The transition
is determined by the strength of the interatomic interaction J. A stronger interaction means a
higher transition temperature (J o< kgT¢). There are two limiting cases to the model:

Vo > J means that the atoms tend to remain near the minima of the potential wells, due to the
very high potential barrier compared to the interaction between the neighboring atoms. Even at
a temperature well above the transition 7, the atoms will reside in one or the other minimum of
the double potential well (because V, > kgT(), although the choice of the specific minimum
will be random at first. This is the order-disorder case, an example of which is BaTiOs. The
ordering sequence for this case in presented in Fig. 7 on the left-hand side.

Vo < J is the displacive limit. Here the forces between atoms are much larger than the forces
due to the local potential. Since now Vy < kgT, the atoms will not be forced to sit in one of
the minima, but will vibrate about the origin instead. On cooling, the influence of the double
potential well will become more important, and atoms start spending more time on one side of
the origin. Because of the strong interatomic interactions, at the 7 these displacements will be
in the same direction on all atoms (Fig. 7 right).

order-disorder limit displacive limit

oo Lol e LA A A A LA
o o i [y g Sy e T [N PN [V BN P Y
ALV VS LA el AV AN AVIFAYL AV ATL AV
SN Sy S Sy Sy Sy g W Sy S [y Y[ Y

Fig. 7: Ordering sequence in order-disorder (left) and in the displacive limit (right). The limits
differ in strength of interatomic interactions relative to the depth of potential wells.

One can also think of this case in the so-called soft mode picture [21]: the harmonic prefactor
—ko in EQ. (4) is also equivalent to the square of the harmonic component of the oscillator
frequency, w?. Since we assumed that %, is a positive constant, this means that the frequency
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w is imaginary. The oscillation mode the frequency of which becomes zero at 7t is called the
soft mode and is said to freeze in at the transition temperature. At 7" < T the frequency of the
soft mode is imaginary. Phonon spectra of materials can be calculated from the first principles
and the soft modes can be identified. This is a powerful tool in determining the ground-state
structure. A phonon spectrum from Ref. [20] of PbTiOs is shown in Fig. 8, where the imaginary
values identify the soft modes.

ooy PPTIO;
Pt il
25 "
TO ;%
0 ' —
TO /
3001
r X M r R

Fig. 8: Phonon spectrum of PbTiO3 (from Ref. [20]). Imaginary values indicate soft modes,
the one with the lowest energy being at the center of the Brillouin zone (I'-point phonon) and
causing a ferroelectric distortion of the compound.

4.2 Landau theory: proper and improper phase transitions

A theoretical treatment of phase transitions usually involves a construction of the associated
(excess) free energy. The terms involved in the free-energy potential have to be chosen to
fulfil certain restrictions imposed by symmetry. Such a phenomenological model uses ther-
modynamic variables to describe the macroscopic state of the crystal structure, irrespective of
the actual microscopic properties (the actual topology of the crystal structure and the physical
interactions between atoms). We have already met with this approach in Sec. 3.

A phase transition can be characterized by an order parameter, which quantifies the deviation
from the high-symmetry phase (paraphase). Thus, the order parameter is zero by definition
for the paraphase, while, provided appropriate normalization with respect to the ground-state
structure is carried out, the order parameter is 1 at 0 K. In Landau theory, the free energy
is expressed as a low-order Taylor expansion in terms of the order parameter, together with
terms that couple the order parameter with other physical quantities (such as strain). From the
free energy, with coefficients that are usually obtained by fitting experimental data, a lot of
information about the system can be derived.

Assuming that the system under investigation can be described with only one order parameter
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7, the excess Gibbs free energy of a phase transition (also called Landau free energy), G1.(n) =
G(n) — G(n = 0) can be expressed as

Gr(n) = 1A772+16773%—13774—%... (7
2 3 4

In the first approximation, A = a(7T — T ), where T is temperature (7 is the ordering tem-

perature), while all the other parameters are assumed to be constant. We will assume that G, is

symmetric with respect to » reversal and drop the odd terms in the expansion (7). In a simple

case, the expansion can be truncated after the fourth-order term:

1 1
Gr(n) = §A772 + ZBnAﬂ (8)

From this expression, various thermodynamic quantities can be obtained, such as the (excess)
entropy S(n) = 0G(n)/0T, the specific heat ¢, = 70S/0T, and the equilibrium order pa-
rameter n(7') = ++/a(T. — T')/B. The second derivative of G (n) with respect to the order
parameter yields the inverse susceptibility of 7,

1
X

corresponding to the curvature of the potential. For 7' < T, this can be simplified to xy ™! =
2a(T, — T). WhenT > Tc,atn = 0, x ' = a(T — T.) is obtained. We see that if y is
the magnetic susceptibility, this result reproduces the Curie-Weiss law (Eq. (1)). In the case of
a ferroelectric material, the order parameter is the electric polarization P. The susceptibility
relates this polarization to an electric field E as P = ¢qxE (g¢ is the permittivity of vacuum)
and is hence related to the static dielectric constant ¢ of the material: £ = 1 + y. Thus, at the
ferroelectric phase transition the dielectric constant diverges.

A divergence of the susceptibility at the phase transition is what defines the driving (intrinsic)
order parameter. If the system is characterized by other, coupled (or extrinsic) order parameters,
their associated response functions (susceptibilities) usually do not show such a divergence [22].

= a(T —T,) + 3B7?, ©)

Order parameter coupling

In systems described by two or more coupled order parameters, each one provides its own
contribution to the Landau free energy and in addition coupling terms arise that may lower or
raise G,. We will see later (Sec. 5) that such a coupling of magnetization and polarization can
be the driving force for the occurrence of multiferroicity. We denote the driving order parameter
7, and the coupled order parameter 7, and write:

1 1 1 1
Gr(m,n) = 514177% + 13177;1 + ...+ 514277% + 132773 +o AN (10)

where \ contains the energy associated with the coupling of the order parameters. We assume
that only A, = a(T" — T¢) contains a temperature dependence and we exclude the odd-order
terms. The exponents n; and n, have to be chosen such that they fulfill the symmetry require-
ments. The biquadratic coupling, n; = ny = 2, is always allowed since the square of the order
parameter is invariant under the parameter’s inversion, but it will rarely be the leading order
term in coupling energy.
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The bilinear coupling (n; = no = 1) is allowed when both order parameters are associated
with the same irreducible representation of the symmetry group of the paraphase. In this case,
the transition observed in 7, is termed pseudo-proper. The linear-quadratic coupling (n; = 2,
no = 1) occurs when the irreducible representations associated with 7; and 7, differ and the
transition is labelled improper with respect to 7,. Finally, a proper transition is the transition
in the driving order parameter ;. For example, the phase transition in PbTiO3 is a proper
ferroelectric and improper ferroelastic at the same time. Further details of different types of
transitions can be found in Ref. [22].

4.3 Vibronic theory of ferroelectricity

We will now slide down to the microscopic scale and look for the origin of the local double-
well potential (Fig. 6) which is needed for a displacive phase transition to occur. The physical
idea behind it can be traced back to the pseudo Jahn-Teller effects [23] and is expressed in the
vibronic theory of ferroelectricity [24]. The basic statement of this theory is that, under certain
conditions, the mixing of the electronic ground state with the near-lying excited ones caused by
the dipole type nuclear displacements lead to an instability (or softening) of the high-symmetry
nuclear configuration with regard to these displacements, resulting in a spontaneous polarization
of the crystal.

We consider a system of electrons and nuclei oscillating about their equilibrium positions. The
oscillation is described by a set of normal coordinates ). We can write down the full Hamilto-
nian of the system as

H=H,+Hyg+V(r,Q), (11)

where r stands for the set of electronic variables, H, is the electronic and H the nuclear
part, while V' (r, Q) describes the electron-nuclear interaction. We now expand the latter in a
series with respect to the normal displacement of nuclei around the high symmetry configuration

Q=0:

2
Vi@ =ve0+ Y () @33 (o) @@+ G2
- a/o a 0

af

One can first solve the adiabatic part of the Hamiltonian (11), H4 = H, + V/(r,0). Let us

assume its solutions are two energy levels, £ (the ground state) and F, (the excited state) with

the corresponding wavefunctions 1, 1. The higher order terms in Eq. (12) we will take into
account as perturbations, obtaining from the perturbation theory the secular equation

Ayp—c¢ Fi2Q

’ ’ = 07 13

' FI*,QQ —A1,2 — £ (13)

where 2A, » = E, — E4. The linear vibronic coupling constant,

(6a.)
Qo /
is non-zero only for the coordinate Q of the correct symmetry: the product of symmetry repre-
sentations of 11,1, and Q must contain the unit representation.

Fio= <l/)1

w2> (14)
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Fig. 9: Adiabatic potential sheets (Eq. (15)) for a simple model-system with two energy levels

O

The roots of Eq. (13) are ¢*(Q) = +,/A%, + F7,Q?. Together with the ionic-core harmonic
interaction term, KQ?/2, where K is the force constant, these roots determine the adiabatic

potential sheets (Fig. 9),
1
W+ = 5[(@2 + /A, + FLQ2 (15)

We can now easily find the instability condition: the lower sheet W~ (@) will have a maximum
at Qmax == 0 and two m|n|ma at szn == :E\/(FLQ/K)Q - (A172/F172)2 |f

K i (16)
< ==

A1,2
In the case of many possible excited states, their effect on the instability is additive (this is the
case of a multilevel pseudo Jahn-Teller effect). We label the excited states with ¢ > 1, and write
the instability condition under the influence of the normal displacements Q“ for this case as

o Fry
K<Z&{ (17)

The symmetry condition (selection rule) for a non-zero vibronic coupling constant mentioned
earlier imposes restrictions on the transitions that can destabilize the system [25]. In addition
to this, for higher excited states A, ; is large thus reducing their contribution. Usually one or a
few excited states contribute significantly to the instability of polyatomic systems.

4.4 Typical examples

Let us first consider the case of BaTiOs. An analysis following the steps described on the
simple example of Sec. 4.3 is also valid in this more complex case and yields eight minima
of the adiabatic potential sheet along the (111) directions of BaTiOjy lattice [25] (recall that Ti
atoms in this compound off-center along the (111) directions in the low temperature phase).

Using first-principles calculations, we can investigate the change of the electronic structure
of BaTiO3 due to a displacement of Ti. Let us compare the density of states (DOS) of the
centrosymmetric cubic structure (Fig. 10 up) and the one where the lattice is kept cubic, but
the Ti atom is shifted towards one of the surrounding oxygens (in [001] direction) by 2% of the
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lattice parameter (Fig. 10 down) [26]. In order to emphasize the distortion effect, this shift was
here exaggerated with respect to the ones usually observed in ferroelectrics. First, note that the
d states of Ti hybridize with the O 2p states. The electrons are in the ground state occupying
the lowest energy levels, residing in this way mostly on O which thus becomes a negatively
charged ion, O%~; Ti, on the other hand, ends up as a Ti** ion, formally in a d° state. The
lowest unoccupied energy levels have the character of Ti d-states, while the highest occupied
ones have the O p-states character. Even in the cubic undistorted structure, the hybridization
results in a partial occupation of the Ti e, and ¢,, states: the ionic configuration calculated in
Ref. [26] is Bal95+Tit 71+,

cguble = |= XZ i Ti 3d

; "
£ T
A n ot 1
A - “ﬁ‘—»}n.a._. e (3
1 W T . b

displaced @ |- XZ e 113d

--------- on-top O2p
—— in-plane

Density of States (arbitrary units)

: PP~ SV S
6 -4 2 0 2 4 6 8
Energy (eV)

Fig. 10: Density of states of O p and Ti d in BaTiO3 (from Ref. [26]) in centrosymmetric cubic
structure (up) and in a polar structure where the Ti atom was shifted along [001] direction by
2% of the lattice parameter (down). The zero of energy is at the Fermi level.

The DOS changes significantly upon distortion (Fig. 10 down). The reduction of the cubic
symmetry leads to a splitting of ¢, orbitals into one singlet (d,,, lying in the plane perpendicular
to the shift) and one doublet (d,.. and d,.). Similarly, the e, states are split into two singlets,
d,2 and d,2_,» which is, like the d,,, perpendicular to the shift. The oxygen p states assume
different energies depending on whether the O atom lies in the plane perpendicular to the shift
or on the axis of the shift (on-top). In Fig. 10, the states which are affected by the shift are
shown: the oxygen p, and the Ti d,. (d,. are the same) and d.=. The states perpendicular to the
shift stay mostly unaffected. Analysis of the DOS reveals two kinds of hybridizations between
O p and Ti d states: a pd, hybridization mixing p. and d,» orbitals, and a pd,. hybridization
involving p,, py, d.. and d,,, states [37].



Multiferroics A6.15

It is very important to note that the shift causes a charge transfer from O to Ti and the occupan-
cies of Ti d.2, d,. and d,. (the orbitals oriented in the direction of the displacement) increase
(this event is also referred to as the charge-transfer vibronic mixing [27]). The fact that all the d
states of Ti are (formally) empty (or, as it is often called, the d°-ness of Ti) means that the charge
transfer can occur for the shifts along every direction. This is consistent with the observation
of several different phases of BaTiO3 with Ti shifts along different directions. Figure 11 visu-
alizes the formation of the new covalent bonds under the lattice distortion at the center of the
Brillouin zone: in the high symmetry configuration the total overlap of the unoccupied Ti 3d,
and O 2p,. is zero. However, when the Ti atom is displaced the overlap is non-zero, resulting in
the additional covalency and the charge transfer.

+ e -

Fig. 11: Formation of new covalent bonds under the lattice distortion: when the Ti atom shifts
along the z-axis, overlap of Ti 3d,. and O 2p, is non-zero and new bonds are formed.

We will turn now to an other perovskite ferroelectric material mentioned earlier, PbTiOs. Its
ground-state structure is tetragonal, with a ferroelectric off-centering of Ti along [001] direction.
The hybridization mechanism leading to the off-centering is the same as that in BaTiO3, but
in the case of PbTiO; the tetragonal structure is stable, while BaTiO3; undergoes a series of
transitions from the high-temperature cubic to tetragonal to orthorombic to rhombohedral with
the low-temperature polarization along [111]. A comparison of the two sheds some light on the
role of the A-site cation (here Ba?* or Pb?*).

Figure 12 compares the DOS of the two compounds [28], using the experimental ferroelectric
PbTiOj structure for both, so that the differences are entirely due to the A-site cation properties.
An obvious difference is that while the Ba 2p states do not hybridize with the valence band, the
Pb 6s show a strong hybridization with the oxygen 2p. This bonding, along with the smaller
ionic radius of Pb?* compared to that of Ba®", leads to the larger strain in PbTiOs, stabilizing
the tetragonal lattice. An indirect effect of the Pb-O bonding on the Ti-O hybridization is that
the Ti 3d states are in PbTiO3 lower than in BaTiOs, even for the same Ti displacement.
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Fig. 12: Comparison of densities of states in BaTiO3 (vertical lines) and PbTiO3 (horizontal
lines). Up: total density of states; middle: density of states on the Ti atom; down: density of
states of Pb s in comparison to the Ba p (from Ref. [28]). Both compounds were taken to have
the same, experimental ferroelectric PbTiO3 structure. The zero of energy is at the Fermi level.

It should be noted that in many IV-VI semiconductors a structural distortion can actually be
driven solely by the ns? valent electrons of the cation [29, 30, 31]. The ns?, usually referred
to as the lone pair, can lose inversion symmetry due to a mixing of the ns? ground state with
the low-lying excited ns'np® state. This mixing can only occur if the ionic site does not have
inversion symmetry [32] and so when the energy gain due to the mixing is larger than the inter-
ionic repulsion which opposes the ionic shift, the crystal distorts.

5 Magnetic ferroelectrics

We have now established that for magnetism the partially filled d-states are needed, while
the ferroelectricity requires the “d°-ness”. This chemical incompatibility was pointed out by
Hill [33] in 2000 as the reason for the rarity of both orders in a single material. This argument
initiated a big search for alternative mechanisms which could lead to multiferroicity. Although
several mechanisms have been identified [34, 35], a room temperature multiferroic is still a
challenge: magnetic ordering temperatures are mostly lower than the ferroelectric ones, and
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while the ferroelectricity might still hang on well above the room temperature, for the magnetic
ordering to also occur the samples have to be cooled.

In this section we will see on examples how the mentioned chemical incompatibility is cir-
cumvented and ferroelectricity induced in several magnetic materials. We will start with the
examples where the electronic pairing is the driving force for a structural distortion, similarly
to the cases of BaTiO5 and PbTiOs. The ferroelectrics with this kind of distortion mechanism
are called proper. However, ferroelectricity can also occur as an accidental by-product of a
different kind of ordering. In this case, the resulting ferroelectric is tagged improper.

An example of a proper magnetic ferroelectric is BiMnOg in perovskite structure, where the
62 lone pair on the Bi ion plays a role in stabilizing the ferroelectric order [39, 40]. Bi cations
move in the direction opposite to oxygen-manganese cage, the shift being induced by the Bi-O
covalency. It should be noted that, surprisingly, this compound is also a ferromagnet, although
an antiferromagnetic state would be expected due to the superexchange interaction. [43] One
possible explanation [26] is that the electronegativity of Bi enhances Bi-O hybridization and
in turn reduces the amount of Mn-O hybridization. The combination of structural distortion
and reduced Mn 3d-O 2p overlap reduces the strength of the antiferromagnetic superexchange
interaction, making the observed ferromagnetic coupling more favorable. Although several
experiments seem to confirm the ferroelectricity of BiMnO; [42], recent first-principles calcu-
lations [41] suggest that the bulk compound should actually be antiferroelectric. The experi-
mentally observed ferroelectricity could be a consequence of strain or defects. This question is
still open.

An other case of (proper) ferroelectricity driven by the 6s2 lone pair on Bi is BiFeO; [44, 45],
with the polarization oriented along [111] direction. The magnetic moments on Fe atoms are
coupled ferromagnetically in the (111) planes and antiferromagnetically between the adjacent
planes. On the top of this antiferromagnetic magnetic structure, a long-wavelength spin-spiral
is superimposed.

Because magnetism and ferroelectricity in these two compounds are due to different ions (re-
sponsible for ferroelectricity is Bi, while magnetism is introduced by the transition-metal ions),
the coupling between the two order parameters is weak, limiting their possible technological
applications. For this reason, the improper ferroelectrics are getting into focus of current re-
search in multiferroics: it is understandable that if an ordering is a consequence of an other (the
order parameter is extrinsic), it should be easily manipulated by the field corresponding to the
driving order parameter.

There are several known mechanisms of inducing ferroelectricity as a secondary order [34].
One way is charge ordering: in many metals with strong electronic correlations charge carri-
ers become localized at low temperatures, forming periodic superstructures, and the material
undergoes a metal-insulator transition. If the charges order in a non-symmetric fashion, they
induce electric polarization. An example of ferroelectricity induced by charge ordering is ferri-
magnetic LuFe,O,, which has a bilayered structure with a triangular lattice of Fe ions in each
layer. Below ~ 350 K, the charge ordering creates alternating layers with Fe?*:Fe3* ratios of
2:1 and 1:2 and a net polarization is induced (Fig.13) [34, 46, 47].

Another kind of improper ferroelectricity is geometric ferroelectricity, such as the one in hexag-
onal YMnOs. This compound is experimentally established to be ferroelectric, with the hexag-
onal perovskite structure[36]. The magnetic ordering is A-type AFM, with noncollinear Mn
spins oriented in a triangular arrangement. Due to the changes in the phonon spectrum at the
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Fig. 13: Ferroelectricity induced by charge ordering in LuFe;O,4 (from Ref. [34]): charge is
transferred from the upper to the lower layer resulting in electric polarization.

antiferromagnetic transition [38], a coupling of ferroelectric and magnetic ordering occurs. Fer-
roelectricity in this case appears as a product of the nonlinear coupling to nonpolar lattice dis-
tortions, such as the buckling of Y-O planes and the tilts of Mn-O bipyramids [48].

Improper ferroelectricity which is most interesting from the technological point of view is the
kind induced by magnetic ordering, enabling manipulation of electric polarization by an ex-
ternal magnetic field. This has been proven to be experimentally possible: the small electric
polarization of perovskite ToMnO3 was successfully rotated by 90° using a magnetic field [49].
The onset of ferroelectricity in ToMnOs correlates with the transition to a spiral spin-density
wave. In order to understand the underlying mechanism, let us consider the case of cubic
symmetry and the part of the thermodynamic potential due to magneto-electric coupling (P is
polarization and M magnetization),

®,o(P,M) = AP - [M(V - M) — (M- V)M +..] (18)

(the omitted terms do not contribute to the uniform polarization) [50]. We assume that there
is no ferroelectric instability in the absence of magnetism and thus we keep only the quadratic
part in the electric part of the thermodynamic potential, ®. = P?/(2y), x being the electric
susceptibility in the absence of magnetic order. From the variation of ¢, + ®,,,. with respect to
P,

P=XM(V-M)—- (M- V)M]. (19)
Let us assume now that a spin-density wave with a wave vector q is present:
M = e; M cos(q - r) + es My sin(q - r) + egMs, (20)

where e - 3 are orthogonal unit vectors. From Eq. (19) and (20), the space-average polarization
is found to be independent of M5 and orthogonal both to e; and q,

F = AleMg[eg X q] (21)
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Note that, if only M; or only M, is non-zero, Eq. (20) defines a sinusoidal spin-density wave.
For this case from Eq. (21) follows that no polarization is induced. The resulting polarization
is non-zero only for a helicoidal spin-spiral, i.e. when My, M, # 0 (Fig. 14). Here one should
pay attention to the terminology: many authors refer to a spin-spiral as helical only in the case
when the wavevector ¢ is perpendicular to the plane of spiraling (defined by the two vectors, e;
and e,), i.e. parallel to es. From Eq. (21) one can see that this spiral induces no polarization.
When the wavevector lies in the spiraling plane, a polarization is induced and the spin-spiral is
labeled cycloidal.

@) P=0

Tos—rt Iaarans

Fig. 14: A sinusoidal (a) and a cycloidal (b) spiral defined by Eq. (20) According to Eq. (21),
only the cycloidal spiral induces polarization [50].

It has been experimentally observed [49] that in TbMnOs5 a transition to a phase with a sinu-
soidal spin-density wave at 7" = 41 K does not yield polarization. Ferroelectricity is induced
only at the transition from the phase with sinusoidal to the one with helical spin-density wave
at 7' = 28 K. This observation is consistent with the result above. Mostovoy [50] also showed
that, due to the same mechanism, electric polarization can also be induced in domain walls and
magnetic vortices.

Finally, it should also be noted that a non-collinear spin arrangement is not a necessary condition
for magnetically induced improper ferroelectricity. Recently, Picozzi et al. have demonstrated
that certain collinear antiferromagnetic configurations of spins in orthorombic HoMnO; and
TbMnOs also induce electric polarization [51, 52].
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1 Anholonomy in geometry

Before introducing the Berry phase, we review the elegant mathematical framework behind it.
It helps explaining why the Berry phase is often also called the geometric phase.

1.1 Parallel transport and anholonomy angle

Consider a two-dimensional curved surface embedded in a three dimensional Euclidean space.
At each point x = (x1,x2) on the surface, there is a vector space 7, formed by the tangent
vectors at that point. For an ant living on the surface, is it possible to judge if two vectors at
different locations (1 and 2) of the surface are nearly parallel or far from it?

One possible way to calibrate the difference between two vectors at different locations is as
follows: Starting from point 1, the ant can carry the vector around in such a way that it makes
a fixed relative angle with the tangent vector along a path between 1 and 2 (see Fig. 1a). Such
a vector is said to be parallel transported. One can then compare the vector already at point 2
with the parallel transported vector for difference.

Notice that, if we follow this rule, then “being parallel” is a path-dependent concept. That is,
one cannot have a global definition of “being parallel” on the curved surface. The other way to
say the same thing is that, if you parallel transport a vector along a closed loop on the surface,
then the final vector v is generically different from the initial vector v, (see Fig. 1b).

The angle between these two vectors is called the anholonomy angle (or defect angle). Such
an angle is an indication of how curved the surface is. One can use it to define the intrinsic
curvature of the surface. For example, for a sphere with radius R, the defect angle « for a
vector transported around a spherical triangle is equal to the solid angle 2 subtended by this

triangle,
A

a= = ﬁa (1)
where A is the area enclosed by the triangle.
One can define the curvature at point x as the ratio between « and A for an infinitesimally
closed loop around x. According to this definition, the sphere has a constant curvature 1/ R?
everywhere on the surface.
You can apply the same definition to find out the intrinsic curvature of a cylinder. The result
would be zero. That is, the cylinder has no intrinsic curvature. That is why we can cut it open

and lay it down on top of a desk easily without stretching.

1.2 Moving frame and curvature

In practice, apart from a few simple curved surfaces, it is not easy to determine the curvature
without using algebraic tools. At this point, it helps introducing the method of the moving
frame. We follow a very nice article by M. Berry (see Berry’s introductory article in Ref. [1])
and apply this method to calculate the curvature.

Instead of moving a vector, one now moves an orthonormal frame (a triad) along a path C
between two points. At the starting point, the triad is (7, é;, é>), where 7 is the unit vector along
the normal direction and (é;, é2) is an orthonormal basis of the tangent vector space 7.

As a rule of parallel transport, we require that, when moving along C, the triad should not twist
around 7. That is, if w is the angular velocity of the triad, then

w-r=0. 2
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(a)

Fig. 1: (a) Parallel transport of a vector from 1 to 2. It offers a way to compare v, and v, on a
curved surface. (b) A vector is parallel transported around a closed path. When the surface is
curved, the final vector would point to a different direction from the initial vector. The angle of
difference « is called the anholonomy angle.

Using the identity é; = w x ¢; it follows from this requirement that é; - é, = 0:

w-r = W'é1><é2

= UJXél'éQZél'éQZO. (3)

Likewise also the relation é, - ¢, = 0 is shown easily.
To make further analogy with the complex quantum phase in the next section, let us introduce
the following complex vector,

Then the parallel transport condition can be rephrased as,

Im<¢*.¢>:o, or i) -1 = 0. (5)
Notice that the real part of ¢* - z/} is always zero since é; - é; and é, - é; are time independent.
Instead of the moving triad, we could also erect a fixed triad, (7,4, v), at each point of the
surface and introduce

n=—(u+1i0). (6)

Assuming these two triads differ by an angle «(z) (around the 7-axis), then (x) = n(x)e @),
It follows that
Y*-dip =n* - dn — ida. @)

Because of the parallel transport condition in Eq. (5), one has da = —in* - dn. Finally, the twist
angle accumulated by the moving triad after completing a closed loop C'is,

a(C) = —ijin* : d—ndx, (8)

where we have changed the variable of integration to the coordinate on the surface. Therefore,
the defect angle can be calculated conveniently using the fixed-triad basis.
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With the help of the Stokes theorem, one can transform the line integral to a surface integral,

04(0) = /1 (dn d_n - dn dn ) dzidz,, (9)
S

/) dl’l ' dl’z dl’z ‘ d—l'l

where S is the area enclosed by C'. In the case of the sphere, one can choose (z1, x2) to be
the spherical coordinates (6, ¢), and choose @ and © to be the unit vectors  and ¢ in spherical
coordinates. That is, & = (cos ) cos ¢, cos 0 sin ¢, —sinf) and v = (— sin ¢, cos ¢, 0). It is not
difficult to show that the integrand in Eq. (9) is sin 8dfd¢. Therefore, a(C) is indeed the solid
angle of the area S.

The integral in Eq. (9) over the whole sphere (the total curvature) is equal to its solid angle,
47, In fact, any closed surface that has the same topology as a sphere would have the same
total curvature 27 x 2. The value of 2 (Euler characteristic) can thus be regarded as a number
characterizing the topology of sphere-like surfaces. In general, for a closed surface with g holes,
the Euler characteristic is 2 — 2¢g. For example, the total curvature of a donut (¢ = 1) is 0. This

is the beautiful Gauss-Bonnet theorem in differential geometry.

2 Anholonomy in quantum mechanics

Similar to the parallel transported vector on a curved surface, the phase of a quantum state (not
including the dynamical phase) may not return to its original value after a cyclic evolution in
parameter space. This fact was first exposed clearly by Michael Berry [3] in his 1984 paper. In
this section, we introduce the basic concept of the Berry phase, in later sections we will move
on to examples of the Berry phase in condensed matter.

2.1 Introducing the Berry phase

Let us start from a time-independent system described by a Hamiltonian H (r, p). We denote the
eigenstates by |m) and the eigenvalues by ¢,,,. For simplicity, the energy levels are assumed to be
non-degenerate. An initial state [¢y) = >_ a,,|m) evolves to a state |1,) = > a,,e”"/ mt|m)
at time ¢. The probability of finding a particle in a particular level remains unchanged, even
though each level acquires a different dynamical phase e~*"t, In particular, if one starts with
an eigenstate of the Hamiltonian, |¢y) = |n), with a,,, = d,,,, then the probability amplitude
does not “leak” to other states.

Let us now consider a slightly more complicated system with two sets of dynamical variables
H(r,p; R, P). The characteristic time scale of the upper-case set is assumed to be much longer
than that of the lower-case set. For example, the system can be a diatomic molecule H,". The
electron and nuclei positions are represented by r and R respectively. Because of its larger
mass, the nuclei move more slowly (roughly by a thousand times) compared to the electron. In
the spirit of the Born-Oppenheimer approximation, one can first treat R as a time-dependent
parameter, instead of a dynamical variable, and study the system at each “snapshot” of the
evolution. The Kkinetic part of the slow variable is ignored for now.

Since the characteristic frequency of the nuclei is much smaller than the electron frequency, an
electron initially in an electronic state |n) remains essentially in that state after time ¢,

‘wt> _ ei,yn(R)efi/th dten(Rt)|n R> (10)

Y
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Table 1: Anholonomies in geometry and quantum state

geometry quantum state
fixed basis n(x) In; R)
moving basis ¥(x) [Y; R)
parallel-transport condition | iy)* - ) = 0 i) =0
anholonomy anholonomy angle Berry phase
classification of topology | Euler characteristic ~ Chern number

Apart from the dynamical phase, one is allowed to add an extra phase ¢*»(®) for each snapshot
state. Such a phase is usually removable by readjusting the phase of the basis |7; R) [2]. In
1984, almost six decades after the birth of quantum mechanics, Berry [3] pointed out that this
phase, like the vector in the previous section, may not return to its original value after a cyclic
evolution. Therefore, it is not always removable.

To determine this phase, one substitutes Eq. (10) into the time-dependent Schrodinger equation.
It is not difficult to get an equation for ,,(¢),

Tn(t) = i{n|n). (11)
Therefore, after a cyclic evolution, one has

Tu(C) = zjé(n\g—g) -dR = inA -dR, (12)

where C'is a closed path in the R-space. The integrand A(R) = i<n|g—g> is often called the
Berry connection.

If the parameter space is two dimensional, then one can use Stokes’ theorem to transform the
line integral to a surface integral,

i 9 19 R 2
Pyn(C)—z/S<aR\>< 8R> dR—/SF d°R. (13)

The integrand F(R) = Vg x A(R) is usually called the Berry curvature. For parameter
spaces with higher dimensions, such a transformation can still be done using the language of
the differential form.
By now, the analogy between Egs. (8,9) and Egs. (12,13) should be clear. Notice that |n) is a
normalized basis with (n|n) = 1. Therefore, (n|n) should be purely imaginary and i(n|n) is a
real number. The basis state |n) plays the role of the fixed triad » in the previous subsection.
Both are single-valued. On the other hand, the parallel transported state |/) and the moving
triad ¢ are not single-valued.
A point-by-point re-assignment of the phase of the basis state, |n; R)’ = ¢9®)|n; R), changes
the Berry connection,
9y
oR
However, the Berry curvature F and the Berry phase are not changed. This is similar to the
gauge transformation in electromagnetism: one can choose different gauges for the potentials,
but the fields are not changed. Such an analogy will be explored further in the next subsection.

A= (14)
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Fig. 2: Allong solenoid hinged at the origin is slowly rotating around the z-axis. At each instant,
the spin at the origin aligns with the uniform magnetic field inside the solenoid.

A short note: It is possible to rephrase the anholonomy of the quantum state using the mathemat-
ical theory of fiber bundles, which deals with geometrical spaces that can locally be decomposed
into a product space (the “fiber” space times the “base” space), but globally show nontrivial
topology. The Mobius band is the simplest example of such a geometric object: Locally it is a
product of two one-dimensional spaces but globally it is not (because of the twisting). In our
case, the fiber is the space of the quantum phase (R and the base is the space of R. The con-
cept of the parallel transport, the connection, and the curvature all can be rephrased rigorously
in the language of fiber bundles [4]. Furthermore, there is also a topological number (similar to
the Euler characteristic) for the fiber bundle, which is called the Chern number.

The analogy between geometric anholonomy and quantum anholonomy is summarized in Ta-
ble 1.

2.2 A rotating solenoid

To illustrate the concept of the Berry phase, we study a simple system with both slow and fast
degrees of freedom. Following M. Stone [5], we consider a rotating (long) solenoid with an
electron spin at its center. The solenoid is tilted with a fixed angle ¢ and is slowly gyrating
around the z-axis (see Fig. 2). Therefore, the electron spin feels a uniform magnetic field that
changes direction gradually. This example is a slight generalization of the spin-in-magnetic-
field example given by Berry in his 1984 paper. The Hamiltonian of this spin-in-solenoid system

IS,
2

L
H=—+ugoc-B 1
Vi “B ) (15)

where L and I are the angular momentum and the moment of inertia of the solenoid, respec-
tively, and the Bohr magneton is up = eh/2mc.

The magnetic field B along the direction of the solenoid is our time-dependent parameter R.. In
the quasi-static limit, the rotation energy of the solenoid is neglected. When the solenoid rotates
to the angle (6, ¢), the spin eigenstates are

(4 e~ gin @

~ COS ~ e S11

=+ B = . 2 -, B = 2 . 16
‘ 7 > ( €Z¢ sin g ) ’ | ’ > < COS g ) ( )
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Table 2: Analogy between electromagnetism and quantum anholonomy

Electromagnetism guantum anholonomy
vector potential A(r) Berry connection A(R)
magnetic field B(r) Berry curvature F(R)
magnetic monopole point degeneracy
magnetic flux ®(C') Berry phase ~(C)

These states can be obtained, for example, from the spin-up (-down) states |£) by a rotation
e~io0(6/2) in which the rotation axis § = (— sin ¢, cos ¢, 0) is perpendicular to both 2 and B.
Using the definitions of the Berry connection and the Berry curvature in Egs. (12) and (13), one
obtains

11— cosf ~
Asr = 2 Bsind (17)
1B

They have the same mathematical structure as the vector potential and the magnetic field of a
magnetic monopole. The location of the “monopole” is at the origin of the parameter space,
where a point degeneracy occurs. The strength of the monopole (1/2) equals the value of the
spin (this is true for larger spins also). That is why the Berry connection and the Berry curvature
are sometimes called the Berry potential and the Berry field. In this picture, the Berry phase is
equal to the flux of the Berry field passing through a loop C' in parameter space. It is easy to
see that,

1:(C) = £50(0), (19)

where Q(C) is the solid angle subtended by loop C' with respect to the origin. The similarity
between the theory of Berry phase and electromagnetism is summarized in Table 2.

The Berry phase of the fast motion is only half of the story. When the quantum state of the fast
variable acquires a Berry phase, there will be an interesting “back action” to the slow motion.
For example, for the rotating solenoid, the wave function of the whole system can be expanded
as

@) = ¢u(R)|n; R), (20)

in which v,,(R) describes the slow quantum state. From the Schrodinger equation, H|V) =
E|¥), one can show that,

h2 1d 2
~T - 9 A ___A'TL n
[2[sin20 (id(b ) T

where ¢, is the eigen-energy for the fast degree of freedom, and A,, = i(n; R|%|n; R). The
off-diagonal coupling between |+) and |—) has been ignored. Therefore, the effective Hamil-
tonian for the slow variable acquires a Berry potential A,,(R). Such a potential could shift
the spectrum and results in a force (proportional to the Berry curvature) upon the slow motion,
much like the effect of vector potential A (r) and magnetic field on a charged particle.

VYn = Ety, (21)
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() (b)

Fig. 3: (a) A metal ring in a non-uniform magnetic field. The spin of the electron that is circling
the ring would align with the magnetic field and trace out a solid angle in its own reference
frame. (b) A ferromagnetic ring in a non-uniform magnetic field. The spins on the ring are bent
outward because of the magnetic field.

3 Berry phase and spin systems

A natural place to find the Berry phase is in spin systems. Numerous researches related to this
subject can be found in the literature [6]. Here we only mention two examples, one is related
to the persistent spin current in a mesoscopic ring, the other relates to quantum tunneling in a
magnetic cluster.

3.1 Persistent spin current

We know that an electron moving in a periodic system feels no resistance. The electric resis-
tance is a result of incoherent scatterings from impurities and phonons. If one fabricates a clean
one-dimensional wire, wraps it around to form a ring, and lowers the temperature to reduce the
phonon scattering, then the electron inside feels like living in a periodic lattice without electric
resistance.

For such a design to work, two ingredients are essential: First, the electron has to remain phase
coherent (at least partially) after one revolution. Therefore, a mesoscopic ring at very low tem-
perature is usually required. Second, to have a traveling wave, there has to be a phase advance
(or lag) after one revolution. This can be achieved by threading a magnetic flux ¢ through the
ring, so that the electron acquires an Aharonov-Bohm (AB) phase (e/h)¢ = 2m(¢/po) after
one cycle, where ¢, is the flux quantum % /e. When this does happen, it is possible to observe
the resulting persistent charge current in the mesoscopic ring.

Soon after this fascinating phenomenon was observed [7], it was proposed that, in addition to
the AB phase, a spinful electron can (with proper design) acquire a Berry phase after one cycle,
and this can result in a persistent spin current [8]. The design is as follows: Instead of a uniform
magnetic field, a textured magnetic field is used, so that during one revolution, the electron spin
follows the direction of the field and traces out a non-zero solid angle €2 (see Fig. 3a). According
to Eq. (19), this gives rise to a spin-dependent Berry phase ,(C) = —(c/2){2, where 0 = +.
After combining this with the (spin-independent) AB phase, spin-up and spin-down electrons
have different phase shifts, generating different amounts of persistent particle current 7., I_.
Therefore, a spin current defined as I, = (h/2)(1; — 1_) is not zero.
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-1/2

Fig. 4: Persistent spin current as a function of the solid angle. At non-zero temperature, the
sharp edges of the sawtooth become smooth.

To illustrate the physics just mentioned, consider a ring that allows only angular motion. Before
applying the magnetic flux, the electron with wave vector k picks up a phase kL from circling
the ring, where . = 27 R and R is the radius of the ring. Because of the periodic boundary
condition, one has kL. = 2mn (n € Z). After adding the AB phase and the Berry phase, it
becomes kL = 2mn + 27 (¢/po) — o(£2/2). Therefore, the energy of an electron in the n-th
mode is

h*k? h’ ¢ ¢a\’
no = Bo = — —0— Bo, 22
€ = + pupBo S <n+¢0 ngo) + pupBo (22)
where ¢q /¢ = /4.
The spin current can be calculated from
1 b\ Ocno
I, = E Z (50) %an (23)

n,o

where P,, = exp(—e¢,,/kgT)/Z is the probability of the electron in the (n, o)-state, and Z =
> o€ o/FsT. For a particular k and ¢, the current can also be written as

Oe
=-S5 %
3 o0

n,o

P.,. (24)

To get a rough understanding, we consider the simplest case, where the n = 1 mode is populated
with equal numbers of spin-up and -down electrons (if the Zeeman splitting is negligible). The
higher modes are all empty at low enough temperature. In this case, the spin current I, =
—(R?/4TmR?)(Q/47) is proportional to the solid angle of the textured magnetic field (see
Fig. 4). At higher temperature, the sawtooth curve will become smooth.

The mesoscopic ring considered above is a metal ring with moving electrons that carry the spins
with them. A different type of spin current has also been proposed in a ferromagnetic ring with
no moving charges [9]. Again the ring is subject to a textured magnetic field, such that when
one moves round the ring, one sees a changing spin vector that traces out a solid angle €2 (see
Fig. 3b). As a result, the spin wave picks up a Berry phase when traveling around the ring,
resulting in a persistent spin current. So far neither type of persistent spin current has been
observed experimentally.
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3.2 Magnetic cluster

Berry phase plays a dramatic role in the quantum tunneling of nano-sized magnetic clusters.
The tunneling between two degenerate spin states of the cluster depends on whether the total
spin of the particle is an integer or a half-integer. In the latter case, the tunneling is completely
suppressed because different tunneling paths interfere destructively as a result of the Berry
phase [10].

Consider a single-domain ferromagnetic particle without itinerant spin. Its total spin J can be
of order ten or larger, as long as tunneling is still possible. Assume that the particle lives in an
anisotropic environment with the Hamiltonian,

2 2 2
H = —lﬁ% + ]{?2 (% — %) s (k‘l > k?g) (25)
That is, the easy axis is along the z-axis and the easy plane is the yz-plane. The cluster is in
the ground state when the spin points to the north pole or to the south pole of the Bloch sphere.
Even though these two degenerate states are separated by a barrier, the particle can switch its
direction of spin via quantum tunneling.

To study the Berry phase effect on the tunneling probability, the best tool is the method of path
integrals. In the following, we give a brief sketch of its formulation.

The fully polarized spin state |7, J) along a direction n with spherical angles (6, ¢) can be
written as,

2J
.0 A
= JIe =2+, (26)
=1

where |7, +) is the spin-1/2 “up” state along the 7-axis and @ is a unit vector along the 2 x 7 di-
rection. Such a so-called spin coherent state can be used to “resolve” the identity operator [11],

=2 /dQ]ﬁ><ﬁ], (27)
where |n) is an abbreviation of |7, J).

In order to calculate the transition probability amplitude (7 ¢| exp[—(:/h)HT]|n;), one first di-
vides the time evolution into steps, exp(—i/RHT) = [exp(—i/hHdt)]", dt = T/N, then insert
the resolution of identity in Eq. (27) between neighboring steps. The transition amplitude then
becomes a product of factors with the following form,

_t
T h
1 — (a|A)dt — %H(Jﬁ)dt. (28)

(At +dt)|e s HU|a)) ~ (At + dt)|at)) (A(t + dt)|H (3)|n(t))dt

12

In the final step, we have replaced the quantum Hamiltonian by a classical Hamiltonian. That
is, (H(J)) = H((J)). This holds exactly if the Hamiltonian is linear in J, but is only an
approximation in general. The correction due to the non-commutativity of the spin operator is
roughly of the fraction 1/.J and can be ignored for large spins.
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medium

Fig. 5: According to the Hamiltonian in Eq. (25), the z-axis and the z-axis are the easy axis and
the hard axis, respectively. There are two (degenerate) ground states at the north pole and the
south pole of the Bloch sphere. Tunneling from one ground state to the other follows the dashed
line on the y — = plane. Applying a magnetic field along the z-direction moves the locations of
the ground states and shrinks the tunneling path to a smaller loop.

Finally, by summing over paths in the n-space, one has
i 1 ty .
(igle 1T i) — / D] exp {ﬁ / [imaly — 1(70)| dt}. (29)
t;

Notice that the first integral in the exponent generates a Berry phase for a path (see Eq. (12)). In
the semiclassical regime, the functional integral in Eq. (29) is dominated by the classical path
n. With least action, which is determined from the dynamical equation of » (see below). During
tunneling, the paths under the barrier are classically inaccessible and n becomes an imaginary
vector. It is customary to sacrifice the reality of time ¢ to keep n real. The good news is that the
final result does not depend on which imaginary world you choose to live in.

Define 7 = it, then the transition amplitude dominated by the classical action is,

(ple# T |g) oc ¢ f Adiee=1/mI H (R (30)
where A = i(n|Vn) is the Berry potential. The integral of the Berry potential is gauge depen-
dent if the path is open. It is well defined for a closed loop, such as the classical path on the
yz-plane in Fig. 5. The Berry phase for such a loop is 2x.J since it encloses an area with solid
angle 27 (Cf. Eq. (19)). This is also the phase difference between the two classical paths from

the north pole to the south pole. Therefore,

(—2le"#HT|2)

x cos(wJ)e_l/hfif H(Jfc)dr (31)
When J is a half integer, the transition process is completely suppressed because of the Berry
phase. The conclusion remains valid if one considers classical paths with higher winding num-
bers [10].

As a reference, we also write down the equation of motion for 7. that is determined from the
classical action in Eq. (30),

(32)
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Fig. 6: An one-dimensional solid with infinite length. Different choices of the unit cell give
different electric polarization vectors ((a), (b)). On the other hand, the change of polarization
does not depend on the choice of the unit cell (c).

This is the Bloch equation for spin precession, in which 9H/0n plays the role of an effective
magnetic field.

One comment is in order: One can apply a magnetic field along the z-axis that shifts the energy
minima along that direction and shrinks the classical loop (see Fig. 5). In an increasingly
stronger field, the size of the loop C eventually would shrink to zero. That is, the Berry phase
~vc would decrease from the maximum value of 27.J to zero. During the process, one expects
to encounter the no-tunneling situation several times whenever ~¢ /2 hits a half-integer. Such
a dramatic Berry phase effect has been observed [12].

4 Berry phase and Bloch state

In the second half of this article, we focus on the Berry phase in periodic solids. It has been play-
ing an ever more important role in recent years due to several discoveries and “re-discoveries”,
in which the Berry phase either plays a crucial role or offers a fresh perspective.

4.1 Electric polarization

It may come as a surprise to some people that the electric polarization P of an infinite periodic
solid (or a solid with periodic boundary conditions) is generically not well defined. The reason
is that, in a periodic solid, the electric polarization depends on your choice of the unit cell
(see Fig. 6a,b). The theory of electric polarization in conventional textbooks applies only to
solids consisting of well localized charges, such as ionic or molecular solids (Clausius-Mossotti
theory). It fails, for example, in a covalent solid with bond charges such that no natural unit cell
can be defined.

A crucial observation made by R. Resta [13] is that, even though the value of P may be am-
biguous, its change is well defined (see Fig. 6¢). It was later pointed out by King-Smith and
Vanderbilt [14] that AP has a deep connection with the Berry phase of the electronic states.
The outline of their theory below is based on one-particle states. However, the same scheme
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applies to real solids with electronic interactions, as long as one replaces the one-particle states
by the Kohn-Sham orbitals in the density functional theory.

We will use X to label the degree of ion displacement. It varies from 0 to 1 as the ions shift
adiabatically from an initial state to a final state. The difference of polarizations between these
two states is given by fol d\dP /d)\, where

— q r .
= 2 lrlo). (33)

The summation runs over filled Bloch states ¢; (with A\-dependence) and V' is the volume of
the material. For an infinite crystal, the expectation value of r is ill-defined. Therefore, we
consider a finite system at first, and let V' — oo when the mathematical expression becomes
well-defined.

The Bloch states are solutions of the Schrddinger equation,

2
1) = (241 ) o = el 3
where V), is the crystal potential. From Eq. (34), it is not difficult to show that, for j # 4, one
has
0o, oV,
(e = &) (051 55) = (0] 510). (35)
Therefore,
dP <¢ Vil i)
sz[m rloy) B0 e (36)

T

There is a standard procedure to convert the matrix elements of r to those of p: Start with the
commutation relation, [r, H,] = ihp/m, and sandwich it between the i-state and the j-state
(again j # 1), we can get an useful identity,

ih <¢z‘|P|¢j>_

(ilr]g;) = =P (37)

With the help of this identity, Eq. (36) becomes the following expression derived by Resta [13],

¢z|p|¢ (b ‘VA‘(bz)
— va ; ; { EZJ_ ej) — He|. (38)

Now all of the matrix elements are well-defined and the volume V' can be made infinite. After
integrating with respect to A, the resulting AP is free of ambiguity, even for an infinite covalent
solid.

For Bloch states, the subscripts are i = (m, k) and j = (n, k), where m, n are the band indices
and k is the Bloch momentum defined in the first Brillouin zone. Eq. (38) can be transformed to
a very elegant form, revealing its connection with the Berry curvature [14]. One first defines a
k-dependent Hamiltonian, 7 = e~ He® T, [t is the Hamiltonian of the cell-periodic function
unk. Thatis, H [Unk) = €ni|Unk), Where ¢y = eXTu,. It is then straightforward to show that,

8unk

S (@)

0
(Omlplonsd = ol | 5 1] o = 7 e = el %
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With the help of this equation and another one very similar to Eq. (35) (just replace the ¢;’s by
the u;’s), we finally get (o = z, v, 2)

@ _ _ g Z aunk | aunk B aunk ‘ aunk
dA V — Oks = OA O\ Ok,

= > k), (40)
nk

Okqo ' OX
space of k&, and A (Cf. Eqg. (13)).

Let us take a one-dimensional system as an example. Assuming the lattice constant is a. Then
the difference of polarization is (¢ = —e),

e 27 /a 1
AP = — dk | dXQ,. 41
) | ma (@)

The area of integration is a rectangle with lengths 1 and 27 /a on each side. The area integral
can be converted to a line integral around the boundary of the rectangle, which gives the Berry
phase ~,, of such a loop. Therefore,

where Q) \ =1 ((ﬂ Quy _ c.c.) is the Berry curvature for the n-th band in the parameter

AP:eZ;—". (42)
T

In the special case where the final state of the deformation 1/ is the same as the initial state V5,
the Berry phase ~,, can only be integer multiples of 27 [14]. Therefore, the polarization P for a
crystal state is uncertain by an integer charge Q.

One the other hand, this integer charge ) does carry a physical meaning when it is the difference
AP between two controlled states. For example, when the lattice potential is shifted by one
lattice constant to the right, this @ is equivalent to the total charge being transported. Based
on such a principle, it is possible to design a quantum charge pump using a time-dependent
potential [15].

4.2 Quantum Hall effect

The quantum Hall effect (QHE) has been discovered by K. von Klitzing et al. [16] in a two-
dimensional electron gas (2DEG) at low temperature and strong magnetic field. Under such
conditions, the Hall conductivity o develops plateaus in the o5 (B) plot. For the integer QHE,
these plateaus always locate at integer multiples of % /h to great precision, irrespective of the
samples being used. Such a behavior is reminiscent of macroscopic quantum phenomena, such
as the flux quantization in a superconductor ring.

To explain the integer QHE, Laughlin wraps the sheet of the 2DEG to a cylinder to simulate
the superconductor ring, and studies the response of the current with respect to a (fictitious)
magnetic flux through the cylinder (see Fig. 7). He found that, as the flux increases by one
flux quantum h/e, integer charges () = ne are transported from one edge of the cylinder to
the other [17]. This charge transport in the transverse direction gives the Hall current, and the
integer n can be identified with the integer of the Hall conductance ne?/h [18].
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B

Fig. 7: In Laughlin’s argument, the 2DEG is on the surface of a cylinder. The real magnetic
field B now points radially outward. In addition, there is a fictitious flux threading through the
cylinder. When the fictitious flux changes by one flux quantum, integer number of electrons are
be transported from one edge of the cylinder to the other.

Soon afterwards, Thouless et al. (TKNdN) [19] found that the Hall conductivity is closely
related to the Berry curvature (not yet discovered by Berry at that time) of the Bloch state. We
now briefly review the TKNdN theory.

Consider a 2DEG subject to a perpendicular magnetic field and a weak in-plane electric field.
In order not to break the periodicity of the scalar potential, we choose a time-dependent gauge
for the electric field. Thatis, E = —0A /0t, Ap = —Et. The Hamiltonian is,

(m — eEt)?
2m

H = + Vi(r), (43)
where w = p + eA has included the vector potential of the magnetic field, and V7, is the lattice
potential. Similar to the formulation the in previous subsection, it is convenient to use the k-
dependent Hamiltonian H and the cell-periodic function w,, in our discussion. They are related
by H|unk> = Enk|unk>.

We will assume that the system can be solved with known eigenvalues and eigenstates, H, |u£32) =
EW1u) in the absence of an external electric field [20]. The electric field is then treated as a
perturbation. To the first-order perturbation, one has

/ 10
[toiny) = |n) —ih Y M (44)

€
n'#n n

where k(t) = ko — eEt/h, and |n) and ¢, are abbreviations of ‘U;OIZ(t)> and Efl(f()(t).
The velocity of a particle in the n-th band is given by v, (k) = (u,|0H /hok|u.). After

substituting the states in Eq. (44), we find

vall) = o3 <<”'%_ﬁ'”'><”' o) _ ) | (45)

€n — €y
n'#n n n

The first term is the group velocity in the absence of the electric perturbation. With the help of
an equation similar to Eq. (39),

(nf==[n) = (en — &) (510, (46)
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one finally gets a neat expression,

de, . on On on On
valk) = 7k <<8_k a> B <a @>) ' (47)

By a change of variable, the second term becomes Q,, x k = —(e/h)Q,, x E, where Q,,, =

- On | On \ i i
i€apy (515 | 51 ) 18 the Berry curvature in momentum space.

For a 2DEG, ©2,, = Q,,z. All states below the Fermi energy contribute to the current density,

. 1 e? d’k
i=v %; —eva(k) = - ;/Wﬂn(k) x E. (48)

Notice that the first term in Eq. (47) does not contribute to the current. From Eq. (48), it is clear
that the Hall conductivity is given by,

e? 1 )
Oye = Xn: o / Pk, (K). (49)

Thouless et al. have shown that the integral of the Berry curvature over the whole BZ di-
vided by 27 must be an integer ¢,,. Such an integer (the Chern number mentioned in Sec. 2.2)
characterizes the topological property of the fiber bundle space, in which the base space is the
two-dimensional BZ, and the fiber is the phase of the Bloch state (see the discussion near the
end of Sec. 2.1). Therefore, the Hall conductivity of a filled band is always an integer multiple
of ¢2/h. Such a topological property is the reason why the QHE is so robust against disorders
and sample varieties. Even though the discussion here is based on single-particle Bloch states,
the conclusion remains valid for many-body states [21].

Some comments are in order. First, the formulas behind the change of electric polarization AP
in Sec. 4.1 and those of the quantum Hall conductivity here look very similar. Both are based
on the linear response theory. In fact, the analogy can be carried further if AP is considered as
the time integral of a polarization current j, = 0P /0t. The latter, similar to the quantum Hall
current in Eq. (48), can be related to the Berry curvature directly.

Second, if a solid is invariant under space inversion, then the cell-periodic state has the symme-

try,
un7k<_r) = unk<r>' (50)

On the other hand, if the system has time-reversal symmetry, then

Uy (1) = (1) (51)

As a result, if both symmetries exist, then one can show that the Berry potential A,, = z’(n|g—ﬁ)
(and therefore the Berry curvature) is zero for all k. The conclusion, however, does not hold if
there is band crossing or spin-orbit interaction (not considered so far).

That is, the Berry potential (or curvature) can be non-zero if (i) the lattice does not have space
inversion symmetry. This applies to the polarization discussed in the previous subsection. (ii)
Time-reversal symmetry is broken, e.g., by a magnetic field. This applies to the quantum Hall
system in this subsection. In the next subsection, we consider a system with spin-orbit interac-
tion, in which the Berry curvature plays an important role.
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Fig. 8: When one increases the magnetic field, the Hall resistivity of a ferromagnetic material
rises quickly. It levels off after the sample is fully magnetized.

4.3 Anomalous Hall effect

Soon after Edwin Hall discovered the effect that bears his name in 1879 (at that time he was
a graduate student at Johns Hopkins university), he made a similar measurement on iron foil
and found a much larger Hall effect. Such a Hall effect in ferromagnetic materials is called the
anomalous Hall effect (AHE).

The Hall resistivity of the AHE can be divided into two terms with very different physics (pro-
posed by Smith and Sears in 1929) [22],

pu = pn + pang = Bn(T)B + Rap(T) oM (T, H), (52)

where B = uo(H + M). The first (normal) term is proportional to the magnetic field in the
sample. The second (anomalous) term grows roughly linearly with the magnetization M and
the coefficient R4y is larger than Ry by one order of magnitude or more. If the applied field
is so strong that the material is fully magnetized, then there is no more enhancement from the
anomalous term and the Hall coefficient suddenly drops by orders of magnitude (see Fig. 8).
Since the normal term is usually much smaller than the anomalous term, we will neglect it in
the following discussion.

Unlike the ordinary Hall effect, the Hall resistivity in the AHE increases rapidly with tempera-
ture. However, the Hall conductivity,

PH__ ~ Pt o> py), (53)

OH = 55
)

shows less temperature dependence, where py, is the longitudinal resistivity. The reason will
become clear later.

Since the AHE is observed in ferromagnetic materials, the magnetization (or the majority spin)
must play a role here. Also, one needs the spin-orbit (SO) interaction to convert the direction of
the magnetization to a preferred direction of the transverse electron motion.

Among many attempts to explain the AHE, there are two popular explanations [23], both involve
the SO interaction, ,

L (p x VV). (54)
The first theory was proposed by Karplus and Luttinger (KL) in 1954 [24]. It requires no
impurity (the intrinsic scenario) and the V' in Eq. (54) is the lattice potential. The Hall resistivity

Hso = —
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pan is found to be proportional to p2. The other explanation is proposed by Smit in 1958 [25].
It requires (non-magnetic) impurities (the extrinsic scenario) and V' is the impurity potential. It
predicts p g < pr. When both mechanisms exist, one has

pam = a(M)pr + b(M)p37. (55)

The Smit term is a result of the skewness of the electron-impurity scattering due to the SO
interaction. That is, the spin-up electrons prefer scattering to one side, and the spin-down
electrons to the opposite side. Because of the majority spins of the ferromagnetic state, such
skew-scatterings produce a net transverse current. Smit’s proposal started as an opposition to
KL’s theory and gained popularity in the early years. As a result, the KL scenario seems to have
been ignored for decades.

At the turn of this century, however, several theorists picked up the KL theory and put it under
the new light of the Berry curvature [26]. Subsequently, increasing experimental evidences
indicate that, in several ferromagnetic materials, the KL mechanism does play a much more
important role than the skew-scattering. These works published in renowned journals have
attracted much attention, partly because of the beauty of the Berry curvature scenario.

KL’s theory, in essence, is very similar to the ones in the previous two subsections. One can
first regard the Hamiltonian with the SO interaction as solvable, then treat the electric field as a
perturbation. To the first order of the perturbation, one can get the electron velocity with exactly
the same form as the one in Eq. (47). The difference is that the state |n) now is modified by
the SO interaction and the solid is three dimensional. That is, one simply needs to consider a
periodic solid without impurities and apply the Kubo formula, which (in these cases) can be
written in Berry curvatures,

oan = == 5 0,(K). (56)

However, not every solid with the SO interaction has the AHE. The transverse velocities (also
called the anomalous velocity) in general have opposite signs for opposite spins in the spin-
degenerate bands. Therefore, these two Hall currents will get canceled. Again the ferromagnetic
state (which spontaneously breaks the time reversal symmetry) is crucial for a net transverse
current.

From Eq. (53), one has py ~ pag = ogp?. Also, the anomalous current generated from the
Berry curvature is independent of the relaxation time 7. This explains why the Hall conductivity
in the KL theory is proportional to p? .

In dilute magnetic semiconductors, one can show that A (k) = ¢S x k for the conduction band
of the host semiconductor, where £ is the strength of the SO coupling (more details in Sec. 5.2).
Therefore, 2 = V x A = 2¢S. In this case, the coefficient b(M) in Eq. (55) is proportional
to M. In ferromagnetic materials with a more complex band structure, the Berry curvature
shows non-monotonic behavior in magnetization. For one thing, in density-functional-theory
calculations, the Berry curvature can be dramatically enhanced when the Fermi energy is near a
small energy gap [27]. However, spin fluctuations may smear out the erratic behavior and lead
to a smooth variation (see Fig. 9) [28].

The Berry curvature is an intrinsic property of the electronic states. It appears not only at the
quantum level, but also in the semiclassical theory of electron dynamics. In the next section,
we will see that the QHE, the AHE, and the spin Hall effect can all be unified in the same
semiclassical theory.
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Fig. 9: (a) Calculated anomalous Hall conductivity (the intrinsic part) versus magnetization
for Mn5Ges using different relaxation times. (b) After averaging over long-wavelength spin
fluctuations, the calculated anomalous Hall conductivity becomes roughly linear in M. The
initials S.S. refers to skew scattering. The figures are from Ref. [28].

5 Berry phase and wave-packet dynamics

When talking about electron transport in solids, people use two different languages: It is either
particle scattering, mean free path, cyclotron orbit ..., or localized state, mobility edge, Landau
level ... etc. In this section, we use the first language and treat the electrons as particles with
trajectories. Besides being intuitive, this approach has the following advantage: The electro-
magnetic potentials in the Schrodinger equation are often linear in r and diverge with system
size. Such a divergence can be avoided if the wave function of the electron is localized.

5.1 Wave-packet dynamics

Consider an energy band that is isolated from the other bands by finite gaps. Also, the energy
band is not degenerate with respect to spin or quasi-spin. The energy band with internal (e.g.,
spin) degrees of freedom is the subject of the next subsection. When inter-band tunneling can
be neglected, the electron dynamics in this energy band can be described very well using a
wave-packet formalism.

The wave packet can be built by a superposition of Bloch states 1,4 in band n (one band
approximation),

W)= [ daala 0l (57)
BZ
It is not only localized in position space, but also in momentum space,
WW) =i [ dgala@] = a. (59)
BZ

where r. and q.. are the centers of mass. The shape of the wave packet is not crucial, as long as
the electromagnetic field applied is nearly uniform throughout the wave packet.

Instead of solving the Schrodinger equation, we use the time-dependent variational principle to
study the dynamics of the wave packet. Recall that in the usual (time-independent) variational
principle, one first proposes a sensible wave function with unknown parameters, then minimizes
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its energy to determine these parameters. Here, the wave packet is parametrized by its center
of mass (r.(t), q.(t)). Therefore, instead of minimizing the energy, one needs to extremize the
action S[C| = fC dtL, which is a functional of the trajectory C' in phase space.

One starts from the following effective Langrangian,

. . d
L<rc7qc; rcaqc> = Zh<W‘%|W> - <W‘H’W> (59)

Notice the resemblance between this S[C] and the the action in the coherent-state path integral
(EQ. (29)). The Hamiltonian for a Bloch electron in an electromagnetic field is

H = %(p%—eA)Q—i—VL(r)—e(b(r) 2H0—e¢+%rxp-B, (60)
in which Hy = p?/2m + Vy and ¢ and A = %B x r are treated as perturbations. The fields
are allowed to change slowly in space and time, as long as it is approximately uniform and
quasi-static (adiabatic) from the wave packet’s perspective.

To evaluate the Lagrangian approximately, one can Taylor-expand the potentials with respect to
the center of the wave packet and keep only the linear terms. Using this gradient approximation,
the wave-packet energy (W |H|W) is evaluated as [29],

e

E = Ey(q.) — ep(r.) + —L(q.) - B, (61)

2m
where FEj is the unperturbed Bloch energy of the band under consideration, and L(k.) =
(W|(r — r.) x p|W) is the self-rotating angular momentum of the wave packet.

On the other hand, the first term in Eq. (59) can be written as

, d du .
W[ W) = Ruli—) + hqe -t (62)
in which |u) is the unperturbed cell-periodic function. Therefore, the effective Lagrangian is
L = hk.- R+ (hk, — eA.) - . — E(r., k), (63)

where ik, = hq. + eA. is the gauge-invariant quasi-momentum, R, = i(n|§—£) is the Berry
potential, and A, = A(r,).

Treating both r. and k. as generalized coordinates and using the Euler-Lagrange equation, it
is not very difficult to get the following (coupled) equations of motion (EOM) for the wave
packet [29],

hk, = —eE —er, x B, (64)
. OF .
ht, = I k. x €., (65)

where 2. = V. x R, is the Berry curvature of the band under consideration.

Compared to the usual semiclassical EOM in textbooks, there are two new quantities in Egs. (64,65),
and both lead to important consequences. The first is the Berry curvature €. It generates the
so-called anomalous velocity. In the presence of a perturbing electric field, the anomalous ve-
locity is eE x €2, which is perpendicular to the driving electric field and gives rise to, e.g., the
AHE.
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The second is the spinning angular momentum L in Eq. (61). It is closely related to the orbital
magnetization of a solid [30]. For a spinful wave packet (Sec. 5.2), this L. modifies the elec-
tron spin and is the origin of the anomalous g-factor in solids. In fact, starting from Dirac’s
relativistic electron theory (which has no explicit spin in the Hamiltonian), we have shown that,
the wave packet in the positive-energy branch of the Dirac spectrum has an intrinsic spinning
angular momentum [31]. That is, it explains why an electron has spin.

In the semiclassical theory of electron transport, the current density is given by

i=- It (66)

where f = fo+0 f is the distribution function away from equilibrium. The distribution function
f s determined from the Boltzmann equation,

of - af__é_f
8r+k ok 1’

(67)

where 7 is the relaxation time. For a homogeneous system in an electric field, 6 f ~ 77 E - %,
and

. e 0FE, e
j~ Vnk (5fhak+f0hExQn). (68)
The usual current (the first term) depends on carrier relaxation time 7 through the change of the
distribution function ¢ f. On the other hand, the second term gives the Hall current. Clearly, this
2 is also the one in the Kubo formula of QHE and AHE. (The latter involves spin-degenerate
band and belongs more properly to the next subsection.)

We emphasize that, just like the Bloch energy Ey(k), both (k) and L(k) are intrinsic to the
energy band (not induced by the applied field). They are the three main pillars of band theory.
Unlike the Bloch energy that has been around for a very long time, the other two quantities are
relatively new players, but their importance should increase over time.

If there is only a magnetic field, then combining Eq. (64) and Eq. (65) gives

. —¢IE B
Pk, = e 69
1+<B-Q (69)

It describes a cyclotron orbit moving on a plane perpendicular to the magnetic field. The orbit
IS an energy contour on the Fermi surface. Its size can change continuously, depending on the
electron’s initial condition.

One can apply a Bohr-Sommerfeld quantization rule to get quantized orbits, which have dis-
crete energies (the Landau levels). The EOM in momentum space, Eq. (69), follows from the
effective Lagrangian,

2

. B L .
Lk k.) = Ze—BkC x k.- B+ hk. R, — E(k,). (70)

This gives the generalized momentum,

L 2 .
o _ W BimR. (71)

ﬂ-:a—kc_ 2eB
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Cyclotron orbits Cyclotron orbits

Fig. 10: The quantized cyclotron orbits on two different energy surfaces. The one on the left is
a paraboloid near its band edge; the one on the right is a conical surface. Without Berry phase
correction, the Landau-level energies are E,, = (n + 1/2)hw. and E,, = vp\/2eBh(n + 1/2)
respectively. In graphene, an orbit circling the Dirac point acquires a Berry phase of 7, which
cancels the 1/2 in the square root.

The quantization condition is given by § 7 - dk. = (m+~)h, where m is a non-negative integer
and v = 1/2 for the cyclotron motion. Therefore, we have

B 1 T(Cp)\ eB
Z ¢ (k. xdk.) =2 - = 72
5 fm(cxdc) 7T(TTL+2 o )h’ (72)

where I'(C,,,) = j?cm R. - dk. is the Berry phase for orbit C',,.

This equation determines the allowed size (and therefore energy) of the cyclotron orbit. The
Berry phase correction slightly shifts the Landau-level energies. For example, the orbit around
the Dirac point of graphene picks up a Berry phase of = due to the monopole at the origin.
This cancels the other 1/2 in Eq. (72) and results in a zero-energy level at the Dirac point (see
Fig. 10). This agrees nicely with experimental measurements [32].

5.2 Non-Abelian generalization

In the one-band theory without internal degrees of freedom, the Bloch state has only one com-
ponent and the gauge structure of the Berry phase is Abelian. When the band has internal
degrees of freedom (henceforth simply called the spin), the Bloch state has several components
and the gauge structure becomes non-Abelian. This happens, for example, in energy bands with
Kramer’s degeneracy. By extending the semiclassical dynamics to such cases, one is able to
investigate problems involving spin dynamics and spin transport.

The scheme for building such a theory is the same as the one in the previous subsection. There-
fore, we only give a very brief outline below. One first constructs a wave packet from the Bloch
states v,q,

D
W)= [ daata (a0l (73)
n=1vBZ
Here n is a spinor index for an isolated band with D-fold degeneracy, n = (11, -+ ,np)? isa

normalized spinor at each g, and a(q, ¢) is again a narrow distribution centered at q.(t).
Similar to the non-degenerate case, there are three basic quantities in such a formalism, the
Bloch energy H,(q), the Berry connection R (q) (and related curvature, now written as F(q)),
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and the spinning angular momentum L(q) [33]. They all become matrix-valued functions and
are denoted by calligraphic fonts. The Bloch energy is simply an identity matrix multiplied by
Ey(q) since all spinor states have the same energy.

The matrix elements of the Berry connection are,

. Ouy,
R, (q) =i <umq|a—qq> ) (74)
The Berry curvature is given by,
F(q)=VqgxR—-iR xR. (75)

Recall that the Berry connection and Berry curvature in the Abelian case are analogous to the
vector potential and the magnetic field in electromagnetism (see Sec. 2.1). Here, R and F
also are analogous to the gauge potential and gauge field in the non-Abelian SU(2) gauge field
theory [34].

The expectation value of the third basic quantity, the spinning angular momentum, is again
given by L(q.) = (W|(r —r.) x p|W). However, it is often written in an alternative (Rammal-
Wilkinson) form easier for evaluation,

L@ = i (50 [fo - Eu(@] | 5o ). (76)

where the cell-periodic function without a subscript is defined as |u) = Zle Nn|un) and Hy is
the Hamiltonian for |u). The corresponding matrix-valued function £ therefore has the matrix

elements,
_m [ Ouy, . ouy
Lu(a) = i (52 | [f - )] | 52 ). @

Obviously, after taking the spinor average, one has the angular momentum in Eqg. (76), L =
(L)=n'Ln= >t T Lo

Equations of motion

So far we have laid out the necessary ingredients in the non-Abelian wave packet theory. Similar
to Sec. 5.2, we can use Eq. (59) to get the effective Lagrangian for the center of mass, (r, k.),
and the spinor n. Afterwards, the Euler-Lagrange equation for this effective Lagrangian leads
to the following EOM [33],

hk. = —¢E — er, x B, (78)
. D :

hi, = <{§H}> — hk, x F, (79)

it = (%E ‘B — ik, - R) n, (80)

where F = (F), and the covariant derivative D/Dk, = 0/0k. — ¢R. The semiclassical
Hamiltonian inside the commutator in Eq. (79) is

H(re, ko) = Ho(k.) — ed(r.) + %L(kc) .B, (81)

where k. = q. + (e/h)A(r.).
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Even though these equations look a little complicated, the physics is very similar to that of the
simpler Abelian case in Sec. 5.1. There are two differences, however. First, the anomalous
velocity in Eq. (79) is now spin-dependent in general. In some interesting cases (see below), F
is proportional to the spin vector S = (S), where S is the spin matrix. Therefore, if one applies
an electric field to such a system, the spin-up and spin-down electrons will move to opposite
transverse directions. This is the cause of the AHE and the spin Hall effect.

Second, we now have an additional equation (Eq. (80)) governing the spinor dynamics. From
Eqg. (80) we can derive the equation for S,

ihS = <[87H—hkc'72]>. (82)

The spin dynamics in Eq. (82) is influenced by the Zeeman energy in H, as it should be. We
will demonstrate below that the term with the Berry connection is in fact the spin-orbit energy.
Such an energy is not explicit in H, but only reveals itself after H is being re-quantized.

Re-quantization

As we have shown in Sec. 5.1, re-quantization of the semiclassical theory is necessary when
one is interested in, for example, the quantized cyclotron orbits that correspond to the Landau
levels. Here we introduce the method of canonical quantization, which is more appropriate for
the non-Abelian case compared to the Bohr-Sommerfeld method.

In this approach, one needs to find variables with canonical Poisson brackets,

{7“0” Tﬁ} = 07
{paapﬂ} = 07
{ra,ps} = dap (83)

then promote these brackets to quantum commutators. As a result, the variables become non-
commutating operators and the classical theory is quantized.

An easier way to judge if the variables are canonical is by checking if they satisfy the canonical
EOM,

or . 0F
ap' P o
The variables r. and k. that depict the trajectory of the wave packet are not canonical variables
because their EOM are not of this form. This is due to the vector potential and the Berry
connection, A(r.) and R(k.), in the Lagrangian (see Eq. (63)).

In fact, if one can remove these two gauge potentials from the Lagrangian by a change of
variables,

(84)

r =

L:p-i‘—E(I',p), (85)

then these new variables will automatically be canonical. Such a transformation is in general
non-linear and cannot be implemented easily. However, if one only requires an accuracy to
linear order of the electromagnetic fields (consistent with the limit of our semiclassical theory),
then the new variables can indeed be found.

The canonical variables r and p accurate to linear order in the fields are related to the center-
of-mass variables as follows [35],

r. = r+R(w)+ G(m),
hk. = p+eA(r)+eB x R(m), (86)
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where m = p+eA(r), and G,(w) = (e¢/h)(R xB)-0R /Jdn,. The last terms in both equations
can be neglected in some cases. For example, they will not change the force and the velocity in
Egs. (78) and (79). These relations constitute a generalization of the Peierls substitution.
When expressed in the new variables, the semiclassical Hamiltonian in Eq. (81) becomes,

H(r,p) = Ho(mw)—ed(r)+eE - R(mw)
e 87-(0
+ B- 2m£(7r)—i—eR x| (87)
where we have used the Taylor expansion and neglected terms nonlinear in the fields. Finally,
one promotes the canonical variables to quantum conjugate variables to convert H to an effec-
tive quantum Hamiltonian.
The dipole-energy term cE - ‘R is originates from the shift between the charge center r. and the
canonical variable r. We will show below that for a semiconductor electron, the dipole term is
in fact the spin-orbit coupling.
The correction to the Zeeman energy is also related to the Berry connection. Near a band edge,
where the effective mass approximation is applicable and £, = 7%/2m*, this term can be writ-
ten as eR - v x B, where v = 7/m*. We know that an electron moving in a static magnetic
field feels an effective electric field E.;; = v x B. Therefore, this term arises as a result of the
electric dipole energy in electron’s own reference frame.

Semiconductor electron

A necessary requirement for the non-Abelian property is that the Bloch electron has to have
internal degrees of freedom. In a semiconductor with both space-inversion and time-reversal
symmetries, every Bloch state is two-fold degenerate due to Kramer’s degeneracy. But where
do we expect to see the non-Abelian Berry connection and curvature?

Instead of the full band structure, one can start from a simpler band structure using the k - p
expansion. Assuming the fundamental gap is located at k = 0, then for small &, one has an
effective Hamiltonian with 4 bands, 6 bands, 8 bands, or more, depending on the truncation.
In the following discussion, we use a 8-band Kane Hamiltonian that includes the conduction
band, the HH-LH bands, and the spin-orbit (SO) split-off band, each with 2-fold degeneracy
(see Fig. 11). The explicit Kane Hamiltonian can be found in Ref. [36].

We focus only on the wave packet in the conduction band. Without going into details, we first
show the Berry connection that is essential to the wave packet formulation. The result correct
to order k! and up to a gauge rotation is [35],

R = V14 ! k 88
-5 @) ()

where V = L(S|p,|X), E, is the energy gap, and A is the SO gap. Therefore, the dipole term
eE - R in Eq. (87) becomes,

Hy,=cE - R =aE o xKk, (89)

where o = (eV?/3)[1/E2 —1/(E,+ A)?]. It coincides precisely with the spin-orbit coupling of
a conduction electron. This shows that the SO coupling has a very interesting connection with
the Berry connection. This is also the case for the SO coupling in Dirac’s relativistic electron
theory [37].
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Fig. 11: One can use the 4-band Luttinger model or the 8-band Kane model to approximate the
energy bands near the fundamental gap.

The Berry curvature calculated from Eq. (75) gives (to the lowest order) F = a/eo, which is
proportional to spin. Therefore, the anomalous velocity eE x F in Eq. (79) is «E x (o). That
is, spin-up and spin-down electrons acquire opposite transverse velocities. In non-magnetic
materials, these two species have the same population and we do not expect to see a net trans-
verse current. However, “if” one defines a spin current as the difference of these two transverse
currents, then there will be a net spin current, giving rise to the spin Hall effect [38].

One can also calculate the spinning angular momentum of the conduction electron from Eq. (77).

The result is,
2mV? 1 1
= — —_ — ) 90
£ 3h (Eg E, + A) 7 (%0)

Through the Zeeman energy in Eq. (87), the orbital magnetic moment generated from Eq. (90)
contributes an extra g-factor,

4mV? [ 1 1
Sg=—= = - . 91
9= 737w (Eg E9+A) 1)

This is the anomalous g-factor of the conduction electron [39]. Therefore, the anomalous g-
factor in solid is indeed a result of the self-rotating motion of the electron wave packet.

Finally, the effective quantum Hamiltonian in Eq. (87) for the conduction band has the following
form,

H(r,p) = Ey(m) —ep(r) + aE - o % ﬂ'—l—%tuB-a, (92)

where E, includes the Zeeman energy from the bare spin, « is given below Eq. (89), d¢ is given
in Eq. (91), and the correction to the Zeeman energy has been neglected. This Hamiltonian
agrees with the one obtained from block diagonalization [36]. The wave packet approach is not
only simpler, but also reveals the deep connections between various effective couplings and the
Berry potential.

Some comments are in order: First, we emphasize again that it is necessary to include the
Berry curvature and orbital moment in order to account for physical effects to first order in
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external fields. Furthermore, from the discussions above, we can see that these quantities are
also sufficient for building a correct quantum theory.

Second, starting from a quantum theory, one can construct a semiclassical theory in a specific
subspace. This theory can later be re-quantized. The re-quantized effective theory applies to a
smaller Hilbert space compared to the original quantum theory. Nevertheless, it can still have
its own semiclassical theory, which in turn can again be re-quantized. As a result, a hierarchy
of effective theories and gauge structures can be produced, all within the wave packet approach
(see Ref. [35] for more discussions).

6 Concluding remarks

In this review, selected topics related to Berry phase in solid state physics are reported. Many
of these topics have been fully developed over the years. The exposition here only serves as
an introduction, without going into details and more recent development. Readers interested
in certain topics can consult some of the following books or review articles: [1] and [40] on
Berry phase in general, [41] and [42] on electric polarization, [43] on quantum Hall effect, [44]
and [45] on anomalous Hall effect, [46] and [47] on dynamics of Bloch electrons, and [35] on
non-Abelian wave packet dynamics.

In optics, the Berry curvature is related to a transverse shift (side jump) of a light beam reflected
off an interface.[48] The shift is roughly the order of the wavelength. Its direction depends
on the circular polarization of the incident beam. This is called the optical Hall effect, or the
Imbert-Federov effect,[49] which is not covered here. The side jump of a light beam is similar to
the analogous “jump” of an electron scattering off an impurity in the anomalous Hall effect [22].
A more detailed study of the optical transport involving spin can be found in Ref. [50].

Several topics not covered here can be found in an upcoming review on Berry phase in solid state
physics [51]. These topics include the orbital magnetization of a solid, dipole moment of the
wave packet, anomalous thermoelectric transport, and inhomogeneous electric polarization. Itis
amazing that the Berry phase plays such a versatile role in so many solid-state phenomena. On
the other hand, several challenging subjects still remain largely unexplored. For example, the
effect of the Berry phase in systems in which non-adiabatic processes or many-body interaction
is crucial. Therefore, one can expect to see more of the intriguing Berry phase effects in solid
state systems.
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1 Stern-Gerlach experiments

1.1 History

The discovery of the electron as a charged particle has been attributed to J.J. Thomson, who
received the Nobel Prize in 1906 for this achievement. The electron spin has been discovered
in 1925 by Goudsmit, Uhlenbeck, and Pauli while trying to understand the optical spectra of
alkali halides. Already in 1922 Stern and Gerlach had performed an experiment with a clear
signature of the spin but had misinterpreted it by the assumption that they had verified
experimentally the quantization of orbital angular momentum. The Nobel Prize was never
awarded to the discovery of the spin per se.

Nevertheless the Stern-Gerlach (SG) experiment has become one of the key experiments for
the detection of spin polarization and its spatial quantization. It is often used to introduce
quantum mechanics and to discuss the Einstein-Podolsky-Rosen (EPR) paradox in the Bohm
version. This is relevant in the context of quantum teleportation and quantum computing,
which are topics of this school. We therefore discuss the SG-experiment and the EPR paradox
in some more detail. However as will be seen, the answer to the EPR paradox comes from
optical experiments using polarized light and not from SG experiments.

1.2 Detection of the quantization of spin-polarization by Stern-Gerlach
experiments

Figure 1 shows a schematic of the general SG setup. Ag atoms carry a magnetic moment,
which is due to an unpaired s-electron. In an inhomogeneous magnetic field a beam of Ag
atoms therefore experiences a deflection, which according to S, = £1/2 (as displayed on the
right-hand side) is in the direction of the field gradient or opposite to it thus demonstrating the
spatial quantization.

1.3 The EPR paradox in the Bohm version

For the following discussion we represent an SG device by the magnets with their peculiar
shape. The letter z in Fig. 2 indicates that the field gradient and separation of the two spins is
in the z-direction, likewise for y that it is in the y-direction. The ball indicated in pink is meant
to be a source of entangled electrons, which are the result of a decay of some other particle

|<|aSSi?:CP ratsachich Z-Achse
erwartete beobachtete :
Verteilung Verteilung Silberatomstrahl
i
JN
\ |"
I..‘.\‘. Ill
\

inhomogenes
Magnetfeld

Fig. 1: The Stern-Gerlach experiment.
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with zero angular momentum. Under these conditions a certain spin component of an electron
going to the right (S;) must be the same but with reversed sign of an electron going to the left
S), 1.e. Sy = -S;. That means if we know Sy for the electron going to the right we know it also
for the electron going to the left. With the other SG device we can measure in the same way
S;, so we know it also for both electrons. With this result we can reach the conclusion that it is
possible to measure simultaneously both Sy and S, here even for both electrons.

However, simultaneous knowledge of non-commuting variables violates the uncertainty
principle of quantum mechanics. The reason why the thought experiment by EPR was
invented in the first place was to disprove this principle, i.e. the statistical nature of quantum
mechanics. The idea to consider spin components came from Bohm. The inventors were
aware that an obvious way out could be that measurement of e.g. Sy could destroy information
about S, gained just an instant before. But since the two SG setups of Fig. 2 could basically be
arbitrarily far away, it could mean that information under certain conditions would have to be
transmitted faster then with the speed of light. Einstein called it “spooky action at a distance”
and never believed it. As we will see, Einstein was wrong in that case, but the ,,spooky
action* does in fact not violate the mentioned law on the maximum speed of signals.

2 Optical experiments
2.1 Some important features of polarized light

(1) Light energy is quantized and comes in the form of multiples of an elemental quantum
hv called photon.

(2) Suppose a polarizer P1 is set at angle o and the light then passes an analyzer P2 set at
B. The probability normalized to 1 that a photon is transmitted is then given by

Puans(a—P) = cos’(a—P) (1a)
and the probability that it is blocked by

Poiock(0—P) =1 - cos?(a—P) = sin*(o—p) (1b)

Sy+ s
a | - [
SGz

Q: Source of H
entangled

spins

Fig. 2: The EPR thought experiment.
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(3) The statement given under (2) is true for the statistical average. For the individual
event a photon due to its quantum nature is either completely absorbed or completely
transmitted.

(4) In the case of transmission through a polarizer the photon acquires the direction of E
given by the polarizer.

2.2 Distinction between local realism and quantum theory: Bell’s
inequality

We follow a lecture presented in the internet [1] and discuss now the experimental situation
displayed in Fig. 3. Suppose there is a source of entangled photons Q characterized further by
the assumption that the total angular momentum is zero. Then at the source the two outgoing
photons must have opposite linear momenta and the same polarization. However due to the
rotational symmetry of the experimental setup around the optical axis the polarization is
undetermined. On the other hand due to statement (4) photons (phl) after passage of P1 will
have polarization o and photons ph2 after transmission through P2 will have polarization p.
Two scenarios have been discussed for what happens to the photons between the source and
the polarizers P1 and P2.

In the classical picture also called ,local realism* at source Q both photons have some
unknown, but well-defined or real polarization. It is assumed that —provided all parameters of
influence were known- passage of a photon at the analyzer would be predictable and
reproducible. As will be seen below, this situation could be characterized by an inequality
relation named after John Bell.

In the quantum mechanical picture the unknown angle o is not assumed to exist in the
traditional sense. It is not part of reality. Then what kind of prediction can we make? If we
assume that phl arrives at P1 earlier than ph2 at P2, then phl after passage has polarization a.
Since phl and ph2 are entangled, phl immediately also acquires o but after passage of P2
acquires B. This is the situation assumed in Fig. 3, hence Eqgs. (1a) and (1b) should be valid.

A further mathematical criterion to distinguish between the two cases was suggested by Bell.
He found that ,,local realism* leads to an inequality relation, which can be —but doesn’t have
to be- violated by the quantum picture. However, in case of violation “local realism” is led ad
absurdum and the quantum picture is true.

Q:
photon
source P2

P1

Fig. 3: The EPR thought experiment with photons.
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.l,l,l,l,l_l,l,l,l
EEEOOTE
Fig. 4: Local realism: Depending on the value of the

hidden parameter (here the color) a photon is transmitted
(green) or not (red).

For a plausibility argumentation we consider first only a single analyzer set at a fixed angle a
and photons impinging on it. If for the transmitted or reflected photons a statistical
distribution is found, then Einstein would ascribe this to a hidden parameter attaining different
values. The relation between parameter and transmission is still believed to be causal.
Suppose we knew the parameter we could then arrange its values in the form of a chart as in
Fig. 4, where the color of each little square stands for a certain value of the hidden parameter.
Without loss in generality we can arrange the squares such that a continuous area for each
color is obtained. After laying two such charts upon each other we obtain intersections as in
the lower part of Fig. 5. and we consider what they represent.

For example the red area n(a+,3+) represents the number of events that in the case shown in
the upper part of Fig. 5 one photon passes at P1 set at a and another at P2 set at 3. This would
be a coincidence because they are generated by the source at the same time. Likewise
n(a+,y+) counts the events that one photon passes P1 set at o and P2 set at y. Finally, the red
area n(a+,y-) corresponds to transmission of a photon at one of the polarizers set at o and
blockage at the other set at y. Comparison of the red areas demonstrates Bell’s inequality
relation

N(a+,B+) < n(a+,y+) + n(B+y-) (2)

Quantum mechanics has led us to Egs. (1). Lets see if they fulfill Bell’s relation (2). From

) &
T no+) m n(v-)

n(Ol.+,B+) = n(Ol.+,Y+) + n(B+sY_)

Fig. 5: Presentation of Bell‘s inequality by means of areas.
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Egs. (1) follows

n(o+,p+) = cos’(o—p)
n(a+,y+) = cos’(a—y)
n(B+,y-) = sin*(a—)

hence
cos®(a—P) < cos’(a—y) + sin*(B—y). (3)

For most values of a,B, and y Eq. (3) is fulfilled but not for a=0°, p=30°, and y=60° because
3/4 <1/4+1/4 is not true. Hence, the quantum-mechanical prediction here is at variance with
local realism. This statement is supported by most experiments.

3 Spin polarization in 3d-metals and its relation to band

structure

In magnetic solids the individual spins add up to the total magnetization, where we have to
include generally also orbital contributions. In 3d-metals the latter are known to be quenched,
so we consider only the spins. In an itinerant picture we obtain the magnetization simply by
adding up the moments of the occupied states, i.e. those below the Fermi level. These are the
states of the 3d bands, with some small contribution from 5s bands. This is illustrated in Fig.
6, right-hand side.

In the rigid band model it is assumed that the displayed band structure is essentially the same
for all 3d metals and the up-shift of the spin-down band relative to spin-up band is also
constant. Magnetization M then is proportional to the hatched area and it is easy to see that
due to the up-shift of Eg for increasing number of valence electrons, M should first increase
and then after a maximum again decrease. Experimental data as collected by Slater and
Pauling and displayed in Fig. 6 indeed show this dependence.

The effect of the spatial quantization on the magnetization M is twofold. First in adding up the
spin moments to the total magnetization we consider only up and down spins, which
corresponds to the two split beams in Fig. 1. Second the total moment is also subject to a

Slater-Pauling Curve
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Fig. 6: The Slater-Pauling curve (left) is explained by the rigid-band model (right).



From the EPR paradox to the GMR effect B1.7

quantization effect. It can only change corresponding to an “umklapp” of one or more spins.
However that doesn’t have to be at the same site but can be distributed over a whole chain of
moments in the form of an excitation. In this picture the “umklapp” of one spin corresponds
to the excitation of one magnon.

For transport phenomena only the electrons with energies close to Er are important. Again,
their spins can be up or down with respect to M. This is quantified by means of the effective
spin polarization

P =(nf-n})/(nt+n)), (4)

where n1 and n| are the number of electrons at Er with spin up and spin down, respectively.
Depending on whether (nt >n]) or (nt <n]) the polarization P will be positive or negative.
From the above consideration within the rigid band model it follows that P(Eg) is positive for
the ascending sections of the Slater-Pauling curve and negative for the descending.

4 Interlayer Exchange Coupling

4.1 Discovery

The exchange coupling of magnetic films across metallic interlayers was first observed in
1986 for dysprosium and gadolinium films separated by yttrium interlayers, and for iron films
separated by chromium interlayers (Salamon et al. 1986, Majkrzak et al. 1986, Griinberg et
al. 1986). For references and a review on interlayer coupling see [2]. Due to the work of
various groups it could later be shown that the coupling is not restricted to metallic interlayers
but can also be observed across MgO and Si.

Three types of coupling, namely ferromagnetic, antiferromagnetic, and 90°-type have been
observed. In Fig. 7 this is demonstrated by means of magnetic domains in Fe/Cr/Fe samples
with “wedge-type” interlayers (see bottom part for Fig. 7). The upper part shows magnetic
domains as observed by a Kerr microscope. In the middle part we see the corresponding
alignments of the magnetizations in the upper and lower Fe film, which are evaluated from
the contrasts of the experimental image in the top part. Since 90°-type coupling is believed to
be extrinsic, but due to interface roughness or magnetic impurities, we discuss here only
ferromagnetic or antiferromagnetic coupling.

4.2 Phenomenological description

A phenomenological description of the coupling in order to link experimental observations by
different methods is given by the interlayer coupling energy per unit area, Ecoupl, as

E coupt = -J1€08(6) - J,c08%(0), (5)

where 6 is the angle between the magnetizations of the films on both sides of the spacer layer.
The parameters describe the type and the strength of the coupling. If the term with J;
dominates, then from the minima of Eq. (5) the coupling is ferromagnetic (antiferromagnetic)
for positive (negative) Ji. If the term with J, dominates and is negative, we obtain 90°-type
coupling. The first term of Eq. (5) is often called bilinear coupling, and the second biquadratic
coupling. There are various methods to measure the parameters J; and J; and, thus, the
coupling. We mention only measurement of spin wave frequencies by microwave absorption
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or inelastic light scattering and remagnetization curves by means of the magneto-optic Kerr
effect or SQUID.

For metallic interlayers the coupling generally oscillates between ferromagnetic and
antiferromagnetic as a function of the interlayer thickness. This is demonstrated by the black
and white stripes in Fig. 8. Here again a sample with a wedge-type interlayer has been used.
The stripes indicate magnetic domains with opposite magnetization direction for black and

\
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Fig. 7: Magnetic domains of a Fe/Cr/Fe trilayer as observed by Kerr microscopy
and their dependence on interlayer coupling, which is varying along the Cr wedge.
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Fig. 8: Oscillatory coupling as observed by scanning electron microscopy with spin
analysis (SEMPA) in Fe/C-wedge/Fe structures. The diagram on the right-hand side
schematically indicates the domain configuration.

white, which come as a result of the coupling, thus demonstrating the oscillatory behavior.
Each pattern is seen twice but with reversed contrast. This corresponds to two domains in the
Fe substrate beneath. Note that in the upper part the period is much shorter (2 monolayers)
than in the lower. This is due to the better quality of the sample in the upper part.

Whereas there are numerous examples for oscillatory coupling across metallic interlayers,
examples for antiferromagnetic coupling across insulators or semiconductors are still rare. In
fact up to now only Si and MgO interlayers are established examples (for a review see [3]).
On the other hand antiferromagnetic coupling across Si turns out to be surprisingly strong. In
terms of the parameters defined in Eq. (5) we have for example J; = -1.6 mJ/m? for Cr, which
is already considered to be strong, but J; = -6.3 mJ/m? for Si interlayers.

4.3 Microscopic origin of oscillatory coupling across metallic interlayers

The basic assumption to explain oscillatory coupling within the quantum well approach is
spin-dependent reflectivity of electrons at the non-magnetic/magnetic interfaces. In Fig. 9
left-hand side strong reflectivity at the interfaces is assumed for those electrons, which have
their spins opposite to the local magnetization, and weak reflectivity for the others. The
reason for such behavior is indicated in the top right part of Fig. 9 using schematic band
structures for the magnetic 3d transition metals and noble metals as examples. For reasons
that will become clearer below, we can restrict ourselves to electrons at the Fermi level. Then,
for the chosen example, for spin-up electrons we have s-states at the Fermi energy for both
the 3d transition metals and the noble metals, as is indicated by the similar densities of states
on the right-hand side. This leads to a good transmission. For spin down electrons on the other
hand, due to the splitting of the energies in the magnetic films we have mixed d- and s-states
at the Fermi level for the transition metal, hence the transmission of the electrons from the
noble metal is reduced. Based on the spin-dependent reflectivity there is a strong (weak)
confinement in the interlayer for spin down (up) for parallel magnetization alignment (left-
hand side of Fig. 9), whereas for the antiparallel alignment the reflectivities are as shown on
the right-hand side and the confinement is lost.
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Fig. 9: Spin-dependent reflectivity leads to the formation of quantum-well states (QWS) for
parallel alignment but not for antiparallel alignment and is the main mechanism leading to
oscillatory interlayer exchange coupling.

Hence, parallel magnetization alignment is characterized by a confinement of part of the
electrons and there are characteristic energy changes associated with this, which makes this
situation for certain interlayer thickness more and for others less favorable than antiparallel
alignment, for which case the confinement is lost. Due to the confinement the motion of the
electrons perpendicular to the interfaces becomes quantized and we obtain a spectrum of
discrete energy levels corresponding to the formation of standing electron waves. Such a
standing wave is indicated in Fig. 9 in the top left part and is the result of the superposition of
two propagating waves with wave-vector components +q,. To form a standing wave we must
have

|29,| = n 2a/D n=1,23,...

where D is the interlayer thickness. When the interlayer thickness is increased the discrete
levels shift downwards and are populated upon crossing the Fermi energy Er. Hence it is
plausible that there are oscillations of the electronic energy due to the fact that discrete energy
levels become populated. It turns out that these oscillations favor parallel alignment for
certain thicknesses and antiparallel alignment for others. Hence the interlayer coupling
oscillates as a function of the interlayer thickness D due to oscillations in the electronic
energy. The oscillation period Ap is given by the difference in D, where two subsequent
discrete energy levels cross the Fermi energy, hence Ap =2x/|2q,|, where q, is a caliper of the
Fermi surface.
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Hence oscillatory coupling can be traced back to changes in the densities of states, which
come as a result of confinement. The stronger the confinement and the higher the changes in
the density of states the larger will be the associated amplitudes. At this point it is important
to consider that not all possible wave-vectors g, from the Fermi surface contribute in the same
way. Some are associated with higher densities of states than others and therefore contribute
more in the above consideration. Let us discuss this situation for our example of noble metal
interlayers and choose the [100] orientation for the normal to the interface. The cross-section
through the Fermi surface in Fig. 9 (bottom right) reveals two wave-vectors g,®? along the
[100] direction. They are associated with particularly high densities of states, because their
lengths change only very little upon a slight shift up or down. They are called stationary
vectors and generate two superimposed oscillations of the coupling as a function of the
interlayer thickness. In this way for given growth direction the oscillation periods can be
predicted from the crystallographic structure and the Brillouin zone. In a similar way a
dependence on the thickness of the layer can also be considered and has indeed been
observed.

4.4 Simple model to explain coupling across insulators and semiconductors

For interlayers of this kind transmission is suppressed for larger interlayer thickness D and,
therefore, also the oscillations discussed in the previous paragraph are replaced by a simple
attenuation. For small D, however, electrons can be transmitted and again we consider their
spin polarization. As a result of spin-dependent reflectivity, scattering, transmission, etc. the
net flow of electrons can be stronger for spin-up (spin-down) electrons and it is easy to see
that this favors ferromagnetic (antiferromagnetic) coupling.

5 Giant magnetoresistance (GMR)

5.1 First observations

Figure 10 shows the first observations of GMR in multilayers (a) and double layers (b).
References to the original publications and review articles can be found in [4,5]. The current
flows in both cases in the plane of the layers. Due to antiferromagnetic interlayer coupling the
magnetization alignment of the neighboring Fe films in small fields is antiparallel and the
resistance is high. Increasing the field aligns the magnetizations parallel and the resistance
drops. In multilayers (a) the effect is much stronger than in double layers (b), which is an
indication that the number of available interfaces plays an important role. The term giant
magnetoresistance referred originally to the large size of the effect in multilayers, but is now
generally used for magnetoresistance due to non-parallel magnetization alignment. The
largest effect occurs when an antiparallel alignment by an applied field is changed into a
parallel alignment. The antiparallel alignment can be provided by antiferromagnetic interlayer
exchange as in Fig. 10 or by other means (see below). Oscillatory coupling also gives rise to
oscillations of the GMR effect as a function of the spacer thickness.
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Fig. 10:First observations of GMR in multilayers (a) and double layers (b). In both cases the
antiparallel alignment at zero field is due to the antiferromagnetic coupling of the Fe/Cr
system.

Antiparallel arrangement can also be obtained by other means, for example by different
coercivities of successive magnetic layers or by pinning the magnetization using an
antiferromagnetic material in direct contact with one of the ferromagnetic layers, known as
“exchange biasing”. If GMR is obtained via one of these methods and not via
antiferromagnetic interlayer coupling, usually the term *“spin valve system” is used in the
literature although there is no difference concerning the mechanism of the magnetoresistive
effect.

The GMR effect has been investigated in two different geometries, namely the “CIP” (current
in plane) and the “CPP” (current perpendicular plane) geometry. The relative effect is
stronger in the CPP geometry, but due to the fact that the contact diameter is some orders of
magnitude larger than the film thickness the voltage drop perpendicular to the layers, in the
CPP geometry, is very difficult to detect, unless the contact diameter is lithographically
reduced to sub-p dimensions.

Apart from the normal GMR effect, where the resistivity is largest for the antiparallel
magnetic state, there is also an inverse effect, where it is largest for the parallel state. The
latter only occurs for asymmetric systems when the two involved ferromagnetic materials sit
on different slopes of the Slater-Pauling curve shown in Fig. 6 (see below).

5.2 Microscopic origin

In Section 4.3 it was seen that interlayer coupling can be explained on the basis of a spin-
dependent interface reflectivity. Similarly GMR can be explained to be due to spin-dependent
scattering.

To see the origin of the normal and the inverse GMR effect we discuss Fig. 11, where for both
cases double layers in parallel and antiparallel alignment are displayed. For both kinds of
spins paths between two reflections at outer surfaces are shown, with scattering events in
between, which is assumed to be representative. In order not to confuse the picture the
changes in direction due to the scattering events are suppressed. The scattering processes are
the cause of electrical resistivity. Usually it is believed that conduction electrons are s
electrons, but their scattering rates are given by the density of d states with the same energy,
i.e. Er, and the same spin. Hence some idea on n1 and n| can be obtained from the right-hand
side of Fig. 6: nt > n| for the ascending parts of the Slater-Pauling curves and nt < n| for the
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(a) Normal GMR (b) Inverse GMR
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Fig. 11: Phenomenological picture for normal (a) and inverse (b) GMR.

descending parts. Therefore, the spin polarization at the Fermi level P according to Eq. (4) is
positive for the ascending and negative for the descending part. We treat interfaces by taking
the values for the corresponding alloys.

In order to explain the normal and the inverse case a magnetic double layer in parallel and
antiparallel alignment is displayed in Fig. 11. For the normal case same materials are used on
both sides of the interlayer for the inverse effect they are different. But how?

We use the simple consideration displayed in Fig. 11. Here we neglect scattering inside the
interlayer and there are equal rates of spin-dependent and spin-independent scattering in the
ferromagnetic films. The spin-dependent scattering has been assumed to take place at the
interfaces, where for the normal GMR effect displayed in Fig. 11(a) only electrons with spin
antiparallel to the local magnetization are assumed to be scattered. According to the two-
current model invented by Mott the total current can be divided into two currents flowing in
parallel. One with spin-up (l+) and one with spin-down (1.) electrons. If we assume that one
scattering event contributes to the total resistance by an amount r then on the left-hand side 1.
is associated with resistance 2r and I. with resistance 4r. Hence for parallel alignment the total
current | = 1. + I_has resistance R, = 2r x 4r/(2r + 4r) = 8r/6. In the same way we obtain for
antiparallel alignment for the total current a resistance Ry, = 3r x 3r/(3r + 3r) = 9r/6. Hence,
there is an increase of the resistance due to antiparallel magnetization alignment and the GMR
ratio is (Rap - Rp)/Rp in the present case would have a value of 12.5%. For double layer
systems the strongest measured GMR effects are around 17%, hence a distribution of the
scattering rates as in Fig. 11 seems realistic.



B1.14 P. Griinberg

Generally an inverse GMR effect [Fig. 11(b)] occurs when the materials on both sides of the
interlayer have different signs of the spin polarization P [see Eg. (4) and Fig. 6]. Normal
GMR occurs when they have the same sign, no matter whether negative or positive.

6 Conclusion

In this lecture various aspects of spin polarization have been discussed. We started with the
experiment by which spin polarization and its spatial quantization has for the first time been
observed. It is clear that for any physical quantity, where the spin is important, its
quantization is important, too. We discussed as examples the magnetization of ferromagnetic
3d metals and alloys as well as two important effects in layered magnetic structures, namely
interlayer exchange coupling and giant magnetoresistance. The role of polarization (of
photons or electrons) for the development of quantum mechanics was also addressed.
Implications thereof will possibly lead to applications in quantum information, which is also
subject of this school.
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1 Introduction

Spin-polarized electric conductance is the very heart of the whole field of spintronics. Nearly all
physical phenomena and proposed and realized devices rely on the transport of spin-polarized
electrons and hence the spin-polarized electron transport is one of the most basic phenomena
to study. The most well-known effect directly linked to spin-polarized transport is the giant
magnetoresistance (GMR) effect discovered by Griinberg [1] and Fert[2]. The magnetoresis-
tance(MR) is the actual key figure of merit in the GMR as well as in other similar effects. It
describes the ratio between the resistance of two different magnetic states of the system, mostly
between an parallel(P) and antiparallel(AP) alignment of magnetic leads as

Rp — Rap

MR = .
min(Rp, RAP)

(1)

This is the so called optimist definition of magnetoresistance. An alternative definition in which
one divides by the sum R, p + Rp can also be found, leading to a maximum MR of 100%
while the optimistic definition is not bounded. Besides the GMR, many further incarnations of
magnetoresistance effects have been discovered and utilized:

e The Anisotropic MR (AMR) is actually known for a long time and describes the change
of resistance induced by a change of the direction of the magnetization. The spin-orbit
interaction, coupling the spin degrees of freedom of the conducting electrons to the lattice
orientation, leads to differences in the resistance depending on the orientation of the mag-
netization with respect to the underlying crystal lattice. This effect is usually considered
to be a bulk effect.

e The Colossal MR (CMR) effect in which a very large resistance change occurs after
application of a magnetic field in some oxides which are close to a phase transition.

e The Tunneling MR (TMR) effect which will be the main topic of this lecture.

e MR effects which combine features of these most basic effects in nanostructures such as
the ballistic MR (BMR) or the ballistic anisotropic (tunneling) MR.

This lecture considers the TMR effect in more detail. The basic setup to consider for this
effect is a nanosize magnetic tunneljunction (MTJ) in which a thin barrier layer of an insulator
separates two magnetic metal leads. If the insulator is sufficiently thin, electrons can tunnel
through the insulator enabling the flow of a current between the two leads. As both leads are
magnetic this current depends on the relative orientation of the magnetization of the leads and
a MR can be measured.

The first realization of such a TMR setup was actually obtained by Julliere [3] in 1975 at very
low temperatures. TMR at room temperature was achieved much later in the 90th by Moodera
[4] and by Miyazaki [5]. These experiments used MTJ with amorphous barrier materials like
Al,O5 and relatively low TMR ratios below 100% were obtained. In 2004 two groups in Japan
(S. Yuasa et al. [6]) and in the US (S. Parkin et al. [7]) managed to fabricate epitaxially grown
Fe/MgO/Fe MTJs with much larger TMR values. The development of such MTJs with MgO
barrier still continues today with TMR values exceeding 1000%.

Different from GMR which has proven to by applicable mostly to build sensors, TMR based
devices seem to have an even larger field of potential application. In particular, the high MR
values possible and the low currents in typical tunneljunctions make the TMR effect the key
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ingredients in many proposed new devices of magnetoelectronic. The most prominent of those
is probably the magnetic random access memory (MRAM). In MRAM-cells the information is
stored in the relative orientation of the magnetization of the two ferromagnetic metallic sides
of the junctions and it can be accessed by using the tunnel-magneto resistance (TMR) effect,
i.e. the strong dependence of the resistance of the junction on this relative orientation.

2 Theory of TMR

Calculating the electronic current flowing in a system due to some bias voltage is one of the
most difficult problems in theoretical solid state physics. Different levels of approximations
have been applied to the problem and theoretical models for many different aspects of the prob-
lem have been discussed. Among these, one of the most well known method to treat electronic
transport in solids is based on the Boltzmann formalism, which describes the time-dependent
change in the electronic distribution function due to the applied field E. Itis a classical approx-
imation as it considers the electrons to be moving freely between individual scattering events.
Interference effects due to the quantum nature of the electrons are neglected. On the other hand,
the very fact that the electrons move in a solid without scattering at every atomic site, i.e. the
possibility to describe the electrons as (quasi) particles moving freely around is of course a
quantum mechanical phenomenon.

The approximations used in the Boltzmann approach restrict its applicability to the case in
which the sample dimensions are much larger than the mean-free path and at the same time
the scattering events can be viewed as independent from each other, i.e. quantum interference
effects can be neglected. A more basic approach to the problem of electric conductance uses
the idea of treating the current as a response of the quantum system to the applied electric field.
In its most rigorous formulation this idea can be used in the linear response limit in which one
assumes that the current depends linearly on the field. Using the corresponding time-dependent
quantum mechanical formulation one obtains the so called Kubo formalism which can be used
to obtain the conductance of the system. While this approach is very general and would allow
to include all kinds of scattering, it is not easy to apply to realistic systems.

In the following, we will concentrate on calculating the electronic transport in tunnel junctions
and hence adopt a rather simplified quantum mechanical point of view. In particular, we will
consider systems with typical dimensions much smaller than the mean-free path due to scatter-
ing at structural impurities, by interface roughness, by phonons, magnons or other temperature
dependent excitations present in real experiments. In the nanosize setups we consider, the re-
sistance is due to the scattering of the electrons on the potential of the insulating barrier.

This lecture will cover two main subjects. First, we will discuss the basic models to describe
electron transport in a single particle picture. After a brief reminder of the basic phenomenon
of quantum mechanical tunneling, and the introduction of the phenomenological description of
Julliere, this part will cover the famous Landauer approach to ballistic transport (Sec. 2.3) as
well as a more specialized approach to the tunneling problem — Bardeen’s approach based on
perturbation theory (Sec. 2.5).

2.1 Tunneling through a one-dimensional rectangular barrier

Of course the quantum mechanical tunneling effect is a very basic phenomenon discussed in
every introductory course of quantum mechanics. In brief it describes the fact that in contrast
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Figure 1: Simple one-dimensional model for quantum mechanical tunneling. A electron of
energy £ = %l# is incident to a rectangular barrier potential.

to the classical mechanics which prohibits a particle to enter any area in which the potential
level surpasses the particles energy, quantum mechanics assigns a finite non-zero probability
find the particle in such areas. Mathematically, this is reflected by the fact that the wavefunction
IS non-zero in such areas of a repulsive potential. To elucidate this effect a little more, let us
consider the probably simplest model for electronic tunneling.

Fig. 1 shows the setup chosen for this simple model, a rectangular barrier of height V5 and
width d between leads in which the electrons are described by free electron wavefunctions. In
this system it is an trivial problem to construct the wavefunction as

exp(ikz) + r exp(—ikx) x < 0 in left region
Y(z) =< aexp(—kzx) +bexp(kxr) 0 < x < dinthe barrier 2
t exp(ikz) x > d in right region.

The decay constant is givenby x = / %% — k2, the coefficients a, b and r, t can be determined

by wavefunction matching, i.e. by the requirement that the wavefunction and its derivative are
continuous at x = 0 and = = d. Simple algebra reveals the well know formula
4ikk e~ tkd

t= . 3
(tk + k)2e="d 4 (k + ir)2erd @)

For the case of a sufficiently thick and/or high barrier, i.e. large d and/or large  this expression
for ¢ can be simplified by neglecting higher order terms in e =" to

4ikk e~ kd wd
——e¢
(k 4 irk)?

The wavefunction now actually leads to an electric current flowing across the barrier. Applying
the quantum mechanical current operator one obtains for the current density (which can be most
simple evaluated in the right electrode region but is of course conserved in all space)

@) o 52 (6 (@06 (2) — 00" (2) () ox 7 @)

Hence we find that there is a finite electric current flowing through the barrier which is propor-
tional to the square of the so called transmission amplitude ¢, a quantity that can be interpreted as
a transmission probability. We should note that we only considered the proportionality here as
the actual value of the current will of course depend on the normalization of the wavefunction,
an issue that will be re-occur in Sec. 2.3.

~
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Figure 2: Julliere model of spin-polarized tunneling. The spin-polarized density of states(DOS)
of the parallel(left) and antiparallel(right) MTJ is sketched. The tunneling current is indicated
by curved arrows at the Fermi energy E'r. In the parallel situation the large DOS at both sides
of the junction in the T-spin leads to a large current while all other currents are small due to
the small number of available states.

2.2 The Julliere model of TMR

In a magnetic tunneljunction the additional spin-degree of freedom of the electrons has to be
included in the description of the transport process. In a ferromagnetic metal electrons of differ-
ent spin exhibit a different electronic bandstructure, their wavefunctions and transport properties
differ. As the electronic density of states for the two spins differ, usually also the number of
states relevant for transport, i.e. those states at or close to the Fermi level differ for the two
spins. In the problem we are interested in here, the electronic tunneling through an insulating
barrier, one usually assumes that the spin of the electrons is not altered. Hence, we assume that
the electron spin is a conserved quantum number, no scattering processes coupling electrons of
different spins are included in our theory. While this approximation is justified in most cases
one should be aware of its limitations. As the tunneling process itself is a coupling phenomena
with a very low transition rate, the neglected spin-flip scattering can actually become a major
effect as it was demonstrated e.g. in the case of surface states in half-metallic MTJs.

If the spin is not changed during the transport process across the MTJ, one can decompose the
total current into a spin-up and a spin-down component

I=1+1, (5)

in which the up-spin electrons form ; and the down-spin electrons I;. This two-current model,
which can be equivalently expressed as a “two resistor” model in which the junctions is consid-
ered as two parallel resistors with + = &+ ++ .+ isan extremely popular and successful concept
in spintronics. Starting from this ansatz Julliere [3] constructed a very basic model explaining
the TMR effect. His basic assumption was that the current across the junction is proportional
to the product of the density of states(DOS) of the two sides (see Fig. 2), i.e. including the two

current model one obtains the following expression for the total current
[P X N NRY +nLlan- (6)

This we will assume to be the expression for the parallel current, if we now switch to an an-
tiparallel alignment to of the electrodes, we will have to flip the spins of one side with respect
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to the other. If we assign this switching to the right electrode we would obtain the following
expression for the current in the antiparallel case

Iap X npinpg| +npngy @)
and consequently we get for the TMR value

Ip —1ap _ (npy —npy)(nrp — ngy)

TMR = = = Py Pg, 8
Ip+1Tap  (npy+np)(ng +ngyp) Lo ®)

where P, and Py are the spin-polarizations of the density of states
Py (nL/rt —1r/R)) ©)

(nL/rt +nL/ry)

for the left and right electrodes, respectively. This very simple expression, known as Julliere’s
formula can already explain many basic features of TMR:

e TMR only occurs if both electrodes are magnetic, i.e. if both have a non-vanishing spin-
polarization.

e The maximal TMR of 100% is expected if both electrodes are 100% spin-polarized, i.e.
if both electrodes behave like half-metals.

o If both electrodes are equivalent, i.e. if P, = Py, the TMR effect is always positive.

At the same time one can easily spot several shortcomings of this theory of which the most
significant is the use of the rather ill-defined densities of states n;,, 5. Obviously, these quantities
have to be somehow related to the electronic density of states at or close to the Fermi level as
these electrons will carry the electric current. Furthermore, it must be somehow related to the
local density of states at the metal/insulator interface since this is the region of space from
which tunneling “takes place”. However, the exact definition of these quantities is unclear and
in consequence the predictive and explanatory power of Julliere’s formula is strongly limited.

2.3 Landauer transport

Landauer [8] proposed a theory of the transport process which is well adapted to describe the
tunneling transport. A very intuitive and simple derivation will be presented here. The Lan-
dauer equation can also be derived more rigorously starting from linear response theory. In
the Landauer approach to transport one considers the region 2 — in which the electrons travel
ballistically — to be attached to two reservoirs L and R.

The conductance I" of the region €2 is defined by the current I, ; divided by the potential differ-
ence between the two reservoirs. The current I, on the other hand is given by the current due
to all electrons traveling from L to R minus the current due to the electrons traveling vice versa

ILR:IL_,R—IR_,L. (10)

To arrive at an equation for these currents, one can start with a simple one-dimensional model.
The current from the left to the right is determined by all electrons leaving the left reservoir,
entering the scattering region €2, and leave this scattering region by passing into the right reser-
voir. If one now assumes a very simple picture of the region €2 in which its electronic structure
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is described by single band in which states with & > 0 propagate from the left to the right the
current is given by an integral over all states with £ > 0 up to the Fermi wave-vector kp

kr
IL—>R = / €U(k3)dk’, (11)
0
where v denotes the group velocity of the state. Since
10F
= —— 12
YT hok (12)

and converting the integral over k into an energy integration using the density of states n(E),

PL o OF
0

h Ok
_/“Lza_E L1

~Jo hok OE/Ok 27

- /MLde—f (13)
B A i

where the energy integration has to be performed over all energies up to the Fermi energy (the
chemical potential) of the left reservoir. This can be understood from the requirement that the
electrons were assumed to be incoming from the left and therefore must be occupied in the
reservoir.
Using the same derivation for the states incoming from the right reservoir one obtains

€

Ig = h(ML — [IR)- (14)

Identifying the difference in the chemical potentials 1., and .z with the applied voltage eV =
(1, — pr) one obtains the following interesting equation for the conductance

ILR 62

= =T (15)
This equation is truly remarkable since it states that each conducting band contributes the same
to the conductance. Irrespectively of the density of states or the group velocity of the conducting
states the conductance is always given by the fundamental quantum of conductance % Indeed,
as Eq. (12) shows, states with a low velocity and therefore a low current j = ev are compensated
by their higher density of states such that the conductance remains constant.
In the case of multiple bands, the derivation has to be modified by the inclusion of an extra sum
over the different bands. Therefore in the general case of NV conducting bands one obtains

62
I'=—N. 16
. (16)
The different ,,bands* in this discussions are usually called ,,channels®. The argumentation
presented so far did not care about the proper definition of these channels. These were simple
assumed to form some kind of ,,band“ within 2 described by the usual formalism of a wave-
vector k£ and a dispersion relation E(k). Strictly speaking, since the system is not periodic, one
cannot speak of Bloch states with some wave-vector having a component & in the direction of
the current.
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Since a key point in the discussion was the preparation of a state traveling from within the
reservoirs through the region €2 one should clarify this idea. For such a state traveling to the
right, one might assume the typical scattering problem. Within the left reservoir one considers
a wavefunction being a Bloch state propagating towards the region 2. ,,Propagate towards* in
this context should be understood as a state having a current flowing towards 2. Within the
reservoirs the resulting scattering state can be written in terms of reflected ), and transmitted
1, states which are all solutions of the bulk Schrdédinger equation in the reservoirs with the same
energy as the incoming state v, . The & values of these transmitted and reflected states have to
be chosen such that the states ,,propagate away* from €.

D) = { Vin(7) + 22, Tinn ) (7) 7in left reservoir

S tin U1 (7) 7in right reservoir

Where, the summations can be considered to be performed over all reflected Bloch states or all
transmitted Bloch states. In principle, also states decaying away from the interfaces into the
reservoirs must be included in this expansion. However, since these do not carry any current
and by shifting the interface far enough into the reservoirs one can eliminate these decaying
states.

Looking back to the derivation of the Landauer formula, an important change has to be made.
While in Eqg. (11) and Eq. (12) the summation over the incoming states and the evaluation of
the current from their group velocities were all performed within the same single band picture,
now one has to distinguish more carefully. The k integration in Eq. (11) has to be performed
over the ,,in“ label of the expansion in Eq. (17). The sum over the velocities on the other hand
is best performed in the right electrode. This is possible since current is conserved and can
be very easily be done if all transmitted states and the incoming state are normalized to carry
unit current. Using the orthogonality of the Bloch states one can perform the same steps as in
Eqg. (10) to (14) again to derive the more general Landauer equation for ballistic transport in the
presence of some scattering of the incoming electrons,

2
(&
r=— > il (18)

where i, j label the Bloch states in the reservoirs traveling from the left to the right.

Eqg. (18) allows a simple interpretation of the transport in terms of the underlying quantum me-
chanical property of the transmission probability P,; = |¢;;|* of an electron from the incoming
Bloch state 7 into the transmitted Bloch state j. This interpretation makes the requirement of
normalizing the incoming and transmitted Bloch states to unit current very clear, since in this
normalization the direct interpretation of this probability is reasonably well defined and Eq. 18
can be seen as a simple generalization of Eq. 16.

(17)

2.4 Interpretation of the Landauer formula

The Landauer formula Eq. (18) was the source of some confusion for quite some time after
its first formulation [9, 10]. The most striking feature of the equation might be its limit for
a perfectly transmitting region, i.e. for a region with P;; = |¢;;|*> = 1 for some set of i, j. For
example if one would consider a perfect bulk crystal sandwiched between reservoirs of the same
bulk material the expansion of Eq. (17) would collapse to

b(F) = { Yin(T) + > 09, 7 in left reservoir (19)

11y = Yin(7) 7 in right reservoir ’
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and one would rediscover Eq. (16) with N denoting the number of incoming Bloch states. At
first glance, this means that the Landauer equation predicts a limited conductance of a system
without any de-coherent scattering, i.e. of a perfect bulk crystal. In the same way the Landauer
equation would also give a finite conductivity of a free electron gas. In this case a question
which can always be asked only becomes more obvious to ask: How can a region with ballistic
transport, i.e. without any dissipative processes, have a finite conductance? Since there is a
voltage drop over the region and a current is flowing, some energy must dissipate. The key to
the answer to this question lies in the definition of the reservoirs which were assumed to be in
thermal equilibrium with some chemical potential ;. attached to them. This is only possible, if
there are actually dissipative processes in the reservoirs leading to the ,,thermalization* of the
»hot“ electrons being transfered across the region of ballistic transport.

The surprising result of a finite conductance in the case of a perfect crystal can now been inter-
preted in different ways. Either the setup described was not correct, since the reservoirs could
not remain in thermal equilibrium and being perfect crystals like the region of ballistic trans-
port at the same time or, which is actually very much the same, no finite voltage can be applied
across such a system. The finite conductance of such a system with perfect ballistic transmis-
sion can now be interpreted as due the finite resistance at the interface between the reservoir
and the ballistic region. This is also called the Sharvin-resistance of the system.

Another point to mention in the discussion of the physical significance of the Landauer equa-
tion is its formulation in terms of a two-terminal device. Both the current and the voltage
drop are defined between the same two reservoirs. In many experiments, especially in meso-
scopic physics a four point measurement is performed in which the current is driven between
electrodes different than those between the voltage drop is measured. Buttiker [9] presented a
generalization of the Landauer equation to these multi-terminal case. While this approach is
very appropriate for mesoscopic physics, on the atomic scale multi-terminal arrangements are
not the typical experimental arrangement and thus Eq. (18) will be sufficient. Additional resis-
tances present in the current circuit are frequently eliminated in a four-point measurement, in
which two additional potential probes are attached close to the scattering volume. However, for
scattering volumes on the atomic scale, these geometries are not appropriate and thus we will
restrict ourself to simple two point geometries.

While the Landauer equation is valid in many cases reaching from systems with high conduc-
tivity to systems in the tunneling regime, one has to be careful in its application in some cases.
Only states in which the incoming and transmitted waves can be described by Bloch states con-
tribute to the tunneling current. This excludes any state which is localized within the region
of ballistic transport to contribute. This corresponds to the fact that these states do not carry
any current within the simple one electron picture of transport chosen. In reality, there exist
processes beyond this picture which lead to some coupling of these localized states to the oth-
erwise orthogonal Bloch states in the reservoirs. For example the many-body electron-electron
interaction, electron-phonon scattering, or structural defects not included in the description can
provide such a coupling. Thus, while the Landauer approach will be correct for cases of high
transmission through Bloch states, one could imagine that in the limit of a very low transmis-
sion probability another processes of transport across the ballistic region becomes important. In
the one electron picture these processes could be thought of as the transition of an electron from
the reservoirs into some localized state of the reservoir, the transition of the electron from one
side of the reservoir to the other and than the transition of the electron into a state of the other
reservoir. The validity of the Landauer model is now limited by the transmission probability
between the reservoir states and the localized state. If this probability becomes comparable to
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full junction left system right system
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v /L

< e
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Figure 3: Setup considered in Bardeen’s approach to tunneling. The full junction is split at
the separation surface. The potential at this surface (assumed to be V' = 0 for simplicity) is
extended to infinity to create two insulated systems with semi-infinite leads and semi-infinite
barriers.

the probabilities P;; = |¢;;]? the Landauer equation breaks down.

On the other hand, one can of course treat the other limit in which the transition probability
between the two sides of the reservoir becomes very small and the details of the scattering
processes needed to couple the states can be neglected. This limit can be successfully described
by theories for the quantum mechanical tunneling process.

2.5 The Bardeen approach to tunneling

The following description of the tunneling process is based on Bardeen’s approach [11] to
tunneling which essentially applies time dependent perturbation theory to the problem. Fig. 3
shows the tunneling setup used in this approach. Two semi-infinite crystals are separated by
a barrier region, which will be assumed to be a vacuum barrier for simplicity. If this vacuum
barrier is sufficiently high and wide one can think the total setup to consist of of two independent
systems: one at the left (L) and one at the right(R) side.

This total separation of the systems leads to two independent Schrédinger equations for the two
sides

(T + Vi)Y = err,

(T + Vr)Yr = €rtr (20)

where T' denotes the operator of the kinetic energy of a single electron and V, and V' are the
potentials of the left and right system respectively. The single particle wavefunction «(¢) of the
entire setup is determined by the total Hamiltonian H =T + V;, + V.

Now one can apply time dependent perturbation theory to describe the tunneling of an electron
across the vacuum barrier. Tunneling from the left to the right is assumed, the case of an
electron tunneling vice versa may be treated completely analogously. The initial state of the
tunneling process is localized in the left system. Therefore, there exists an eigenstate ¢/} with
|Y(t — —o0)) = |¢%). The time dependence of the state |¥(¢)) is governed by the Hamiltonian
of the whole system.

L0
ifi (1)) = H(2) @

The tunneling probability is given by the overlap of this time-dependent wavefunction with a
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wavefunction |1}, > of the right system. Multiplying Eq. (21) from the left with (¢/%;|leads to

0
(il (ing; ) o) = Wil 100 @)
Using the Schrodinger equation for the left state one obtains
ihg (Wl ) = (V| H[¥) — (k| Hr [v) (23)
= (Yr| VL [¥)

Substituting |1 (t — —o0)) = [F) for |¢) at the right hand side of Eq. (23) leads to first order
perturbation theory

i (Wl 0 = (Wl Vi o). 24)

Even though this equation looks familiar one has to emphasize that this is not a result obtained
by standard time-dependent perturbation theory. The states |¢) and |¢r) are eigenstates of
the Hamiltonians H and Hp, respectively. Therefore, they do not form a complete orthogonal
basis of the eigenspace of the total Hamiltonian H = T + V, + Vj and the matrix elements
at the left side of Eq. (24) are not sufficient to determine the total time dependence of |¢) >.
This is a basic weakness of Bardeen’s approach. However many applications of this formalism
have shown that Bardeen’s approximation produces reliable results for systems which are well
separated, i.e. systems where the overlap of the two wavefunctions vz and ¢y, is small.

Since the potential V7, is not small in the left region, the question arises whether one is allowed
to use perturbation theory at all. However, it can be seen from Eq. (24) that the quantity which
in fact determines the strength of the perturbation of the initial state is (y%| V7, |¢}). Since the
final wavefunction |¢r) is localized in the right region in which the left potential V7, is very
weak this perturbation might still be regarded as a small perturbation and thus time depended
perturbation will lead to reasonable results.

By separating the time-dependence of the states |/}) = e‘»! |U7) and |i%) = et |T4), inte-
grating Eq. (24) and performing the limit ¢ — oo, one obtains an expression for the tunneling-
probability per time interval

A e M (25)
€y 6”t
— lim é—sm O >} L% (26)

t—oo h (€, —€,)%
where the matrix element A/, is given by the stationary-state matrix element of the potential

M, = (WR| VL [vf) (27)

Assuming a continuous range of energy levels ¢, (or ¢,) the limit of Eq. (26) can be evaluated

directly. One obtains
2w
Pt = 506 — o) M. (28)
This result is similar to the well known *Golden Rule” Fermi obtained for standard time-
dependent perturbation theory. It describes elastic tunneling with energy €, = ¢, only. Formally

this condition is taken care of by the §-function in Eq. (28).
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To evaluate this matrix element one can introduce an additional approximation. He assumed the
potential V7, to be zero in the right region of space. Similar the right potential should be zero in
the left region. More formal one assumes a separation surface .S which separates the regions in
which the two potentials differ from zero. This can be written down by the condition V.V = 0
for any point in space. Figure 3 shows the setup as used in this additional approximation. Of
course, this approximation will become better if the potentials V;, and V are reasonably small
at and beyond the separation surface. This will be the case if the separation surface is located
far out in the vacuum.

Using the Schrddinger equation for the left wavefunction and having in mind that the potential
V1, is zero in the right space one can now rewrite the matrix element as an integral over the left
region only

* o 5
ME = [ 07 (6 + 5 VLRIV (29)
L m

which can be written in a more symmetric form

MEE = [, {Wh() e, Wh ) + () VAW () | aV
= [, { W) (T + V)W) + () VAW () b dv (30)
=~ [, { WOV — wh VP | av

In these transformations in the first step the eigenvalue ¢, was substituted by ¢, because energy
conservation requires the calculation of matrix elements with ¢, = ¢, only. In the second step
the Schrodinger equation for the right state was used (the arrow indicates the wavefunction the
operators acts on). The integration area is the left region. Since the potential V5 is assumed to
be zero in this region, it was dropped in the last step. Using Greens theorem and the boundary
condition that the right wavefunction is zero at infinite distance from the separation surface this
integral can be transformed into an integral over the separation surface

M= =g | (WLIVOR() — WH(F) V() ) dS. (31)
So far only an expression for the probability of the transition of an electron from a left state into
a right state was obtained.

Slightly modifying Eq. (28) this probability can be written as

LR R LR |2
P/,Ll/ = _5(6 — & _€V)|M,uz/ | ) (32)

where the additional term eV is introduced to account for the bias voltage V' applied between
the two sides. To calculate the tunneling current one has to sum over all different possible left
and right states and one has to keep in mind that the electrons might tunnel from the left to the
right as well as vice versa. The total current therefore is given by

I = [L—>R_ [R—>L
=e> fle)(1 = flew +eV)) Pt — e (1= fleu)) f (e + eV)PJE
v v

=e ZV (fen) — fle, +eV)) PLE

(33)

where f(e) denotes the Fermi-distribution function which is introduced to ensure that only tun-
neling from occupied to unoccupied states can occur. In Eq. (33) the symmetry of the tunneling
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probability PHL,,R = ijf which can easily be deduced from Eq. (31) was used. The sum in
Eq. (33) has to be performed over all right states labeled by v and all left states labeled by .
No further assumption is made on the nature of these left and right states, i.e. both Bloch states
and surface states decaying into the bulk contribute to the current and therefor this formula dif-
fers significantly from the Landauer formula [12]. At the same time Eq. (32) and Eq. (33) show
quite some similarity to the Julliere model. However, the additional matrix element in Eq. (32)
which contains many details of the wavefunction.

3 TMRin crystalline MTJs: Fe/MgO/Fe

In contrast to the widely used but amorphous barrier material Al,O3;, MgO allows to grow
well-defined tunneljunctions. The Fe/MgO/Fe(100) system represents an ideal candidate for
a comparison with a theoretical description. Because of the small lattice mismatch between
MgO and Fe, it is possible to grow MgO epitaxially on the Fe substrate. Thus one might expect
the MgO/Fe(100) interfaces obtained experimentally to be very close to the ideal theoretical
structure. As discussed already, the Fe/MgO/Fe MTJs recently enabled the production of most
successful TMR devices with high TMR ratios at room temperature.

\

Figure 4: Sketch of an Fe/MgO/Fe MTJ with 3 monolayer (ML) of MgO sandwiched between
antiparallel magnetized Fe leads.

The basis of the current understanding of the properties of such crystallineFe/MgO/Fe MTJs is
its electronic structure. Actually, calculations [13, 14] establishing the arguments we are going
to discuss have been predicting a high TMR in this junction even before the first sucessful
experiments could be performed. Hence, we will first discuss the basic electronic properties
of the interface with special focus on the states relevant for electronic transport. We will then
apply the Landauer formalism by calculating the transmission probabilities of the MTJ. The
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results have been obtained by using the density functional theory code FLEUR [15] developed
in Jilich and its extension to calculate semi-infinite systems and transport [16].

3.1 Basic electronic properties of the Fe/MgO interface

Fig. 5 shows the majority (positive) and minority (negative) contribution to the local density of
states (LDOS) at different positions for the MgO/Fe interface. The energy range ex — 3eV <
e < ep + 3eV in the plots was chosen to include only states near the Fermi energy e which
are relevant for transport. The uppermost panel displays the Fe-LDOS. To the left the LDOS of
bulk Fe layer is plotted, to the right the LDOS of the interface Fe is shown. In both plots arrows
at the Fermi level e are used to indicate the value of the LDOS in both spins. One can see
that for the bulk Fe the LDOS at Fermi level is slightly larger for the majority spin contribution,
hence the spin polarization at Fermi level is positive in bulk Fe. The spin polarization at the
Fermi level becomes negative at the interface Fe layer. This result might already point out some
problem of applying the Julliere model as it is not clear which polarization to use in this model.
The two central panels of Fig. 5 display the LDOS in the MgO interface layer, the lower two
panels the LDOS in next MgO layer. At the energy range shown here, bulk MgO has a bandgap
and therefore the LDOS in these plots are purely due to the decaying LDOS induced by the Fe.
This can be seen very clearly in the right panel showing the O LDOS. The LDOS in these plots
mirrors that of the Fe at the interface. These induced states decay exponentional into the MgO,
hence the LDOS in the interface MgO layer is about a factor of 10 smaller than that of the Fe
layer, and it decays by another factor of ~10 in the next MgO layer.

2 ;\//\\WFe\(center)
0 W
B \ \ \ \ \

Fe(interf.)

0.1 — — 0.1
0.05 Mg(interf.) O(interf.) Joos
wn - - N wn
O o o O
e i L 4 QO
-0.05+— — -0.05
0.1 | ] | ] | B ] | ] | ] | ] | ] | ] —1-0.1
0.02F = — 0.02
- Mg(center) O(center) .
0.01+ — 0.01

i

\o
y

-0.01 -0.01

-0.02 ‘ -0.02

-1 0 1 2 3

(IQI T II
)
=
o
N
)
(.A)I T II
N

Energy[eV] (e=0)

Figure 5: Local density of states at different atomic positions of the Fe/MgO/Fe junction
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3.2 MgO as a tunneling barrier

The induced LDOS as discussed so-far is already an indication of the decay of the wavefunc-
tions originating in the Fe into the MgO. As we have seen in our simple discussion of Sec. 2.1
this decay is one of the fundamental ingredients of the tunneling process. In particular, the rate
r of this decay, will determine the transmission of electrons through a tunnel barrier. In our
simple model this decay rate was simply given in terms of the height of the barrier as

2m 2m
KR = —‘/0 — ﬁe,

o (34)

where 1} is the potential in the barrier and e the energy of the tunneling electron. If we now
consider a realistic barrier with its crystal structure, we will have to switch from a simple free
electron model to the full bandstructure of the material. However, in contrast to the usual dis-
cussion of the bandstructure in terms of Bloch states delocalized in all space, we must focus
our interest at bandgaps in which no such Bloch states exists. Hence, we will have to consider
the so-called complex bandstructure (CBS) in which not only the usual Bloch states are plotted
but also states which decay exponentially. Such states exist also at energy at which no ordinary
Bloch states can be found, i.e. in the bandgaps of the usual bandstructure. They can be un-
derstood as generalizations of Bloch states in which the k-vector is not purely real but has an
imaginary part. In fact, for a state with the complex vector k = q+ i one finds

s

Y(7) = () = e ey (), (35)

i.e. an exponentially decaying state with decay constant <. While such states are not normaliz-
able in an infinite bulk and thus are no valid solutions for bulk wavefunctions, at interfaces and
in particular in thin tunnelbarriers these evanescent states form the generalization of the simple
exponentially decaying solution used in Sec. 2.1. More details of the properties of the CBS can
be found in the literature, e.g. in [17].
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Figure 6: a) Complex bandstructure of MgO at E” = 0. b) Smallest decay constant xk =
min(Sk. (k))) for all kj-values of the two dimensional Brillouin zone.

We now focus on the CBS of MgO as shown in Fig. 6a). The bandgap has a value of about
4.5 eV as typical for LDA calculations and reaches from about -2.5 eV up to 2 eV. The Fermi

min(k)
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energy is chosen according to its position in a Fe/MgO junction. At EII = 0 the highest occupied
band of the valence band is connected by a complex band forming a loop with purely imaginary
k. to the lowest unoccupied band. This complex band is the slowest decaying evanescent state
within the band gap. At Fermi energy the red line shows that this slowest decaying band has a
k. valueof k, = 0+i0.34 A According to Eq. (4) this will lead to a tunneling transmission
proportional to exp(—0.68 AT d) where d is the thickness of the barrier. As all other bands
decay more rapidly, this is the expected asymptotic decay constant if no interface effects are
present, i.e. it is the decay expected in the limit of very thick barriers.

To confirm that this state is actually the slowest decaying evanescent state one has to investigate
not only the electronic states of normal incidence at &, = 0 but all possible &;-values from
the two-dimensional Brillouin zone(2D-BZ). In Fig 6b) for each of these k] -values the smallest
imaginary « value is plotted yielding the slowest decaying wavefunction. On can see that this
minimal ~ is smallest around the center of the 2D-BZ and grows quickly for k-vectors with
non-vanishing |;|.

Summarizing these results, one might state that MgO as a barrier material shows properties
similar to a simple flat-potential model. In particular:

e Electrons of normal incidence have the slowest decay into the barrier.

e The decay constant « raises with increasing \EH\, little anisotropy is found, i.e. all E”-
directions show the same increase in the decay constant.

e The state with slowest decay at EH = 0 is the highest symmetric, so called A; state.

The last of these points will be of special interest later, as the symmetry of this slowest decaying
state determines the tunneling characteristics significantly.

3.3 Electronic tunneling at normal incidence
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Figure 7: a) Transmission through a 3ML MgO barrier at EH = 0 as a function of energy in a
parallel magnetized MTJ. b) Bandstructure of incident electrons in Fe for the same k-point and
energy range.

We start our discussion of the electronic tunneling by investigating the transmission for elec-
trons at k| = 0. Fig. 7a) shows the corresponding energy dependent transmission probability
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T = > |t|* for energies close to the Fermi energy for a parallel alignment of the lead mag-
netizations. The two most striking features of this plot are: the very small transmission in the
minority spin channel around the Fermi energy, which actually can not be distinguished from
zero transmission and the strong transmission starting at around ~ —1 eV in the majority spin
channel. Obviously, minority spin electrons are strongly reflected at the MgO barrier while
some majority spin electrons — those in a band starting at ~ —1 eV — have a significant trans-
mission probability. Actually, the same strong increase of the transmission can also be observed
in the minority spin channel at a higher energy of around ~ 1.8 eV.

By comparison with the bandstructure of Fe, shown in Fig 7b), one can easily recognize the
origin of this effect. In the majority spin channel of Fe a A; band starts at ~ —1 eV which can
couple to the slowly decaying evanescent band in MgO and, in the case of parallel alignment
of the magnetization, to the same Fe band on the other side of the tunneling barrier. All other
bands in Fe have a different symmetry and hence can not be matched to the slowest decaying
state in MgO. Consequently, these other states will decay much stronger into the barrier and will
have a very low transmission probability. On therefore could call the MgO barrier a symmetry
filter as only those Fe states with the correct A; symmetry can lead to a significant transmission.
The low transmission in the minority spin close to the Fermi energy is therefore a result of the
exchange splitted bandstructure in which the A; is pushed well above the Fermi level. In the
minority spin channel the transmission also abruptly raises as soon as the A; can contribute at
slightly above 2 eV.
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Figure 8: Transmission through a 3ML MgO barrier at EH = 0 as a function of energy in a
antiparallel magnetized MTJ.

This interpretation in terms of symmetry also explains the low tunneling transmission in the
case of an antiparallel alignment of the magnetizations (Fig. 8). In this case the A; states
present on one side of the barrier do not find corresponding “partners” at the other side of the
MTJ as the spins are flipped. Consequently, the transmission in the anti-parallel configuration of
the junction looks qualitatively similar to that of the minority-spin transmission of the parallel
junction. Due to symmetry, in this case both spins of course give the same transmission.

3.4 TMR of the Fe/MgO/Fe MTJ

While the results presented so far give an indication of the origin of high TMR in all-epitaxial
Fe/MgO/Fe MTJs, one important problem still has to be studied: the influence of electrons with
ki # 0. In this case two competing effects could be expected. On the one hand electrons with

non-normal incidence, i.e. with non-vanishing E”, decay faster into the MgO layer as we have
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discussed in Sec. 3.2. This effect is expected to be stronger for thicker barriers and thus in the
limit of thick MgO only k£ = 0 should contribute to the tunneling current and consequently a
huge TMR should be expected in this limit.
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Figure 9: a) Transmission through a parallel magnetized 3ML MgO barrier at the Fermi level
for all & and both spins. b) Transmission through an antiparallel magnetized 3ML MgO barrier

at the Fermi level for all Ell- c¢) Sketch of the 2D-BZ. Not e: the plots have different scalings
while the colorscale is the same in all plots.

On the other hand, the symmetry analysis we presented and the strong selection of tunneling
states in MgO is only valid for the T'-point and thus one could expect that the suppression of
tunneling minority spin states of Fe and the huge polarization of the transmission is only present
at i, = 0. To investigate this effect we also have to consider the transmission in all of the 2D-BZ
(Fig 9c)).

Fig. 9a) shows the transmission as a function of E” for the majority and minority spin of a
parallel aligned magnetization through 3ML MgO. This transmission was evaluated for states
at the Fermi level so that the integral over the 2D-BZ of this transmission is the zero-bias
Landauer conductance of the MTJ. Concentrating first at the majority-spin transmission one
can identify a peak of high transmission at the center of the 2D-BZ. At the very center of this
peak, the value of highest transmission is the normal incidence transmission we discussed in the
last section. This peak of transmission due to the Fe A;-band clearly dominates the majority-
spin conductance in the parallel alignment. As expected, the minority spin channel shows no
transmission directly at the f-point, and also in its vicinity around the center of the BZ no
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transmission is found. However, several sharp spikes of very high (up to perfect transmission of
1) can be seen at some E”-points. A detailed study of these spikes identifies them as resonance
effects in which surface resonance states at the interface lead to high transmission. These effects
have been studied in great detail and are expected to decay rapidly with interface roughness[18]
present in a realistic junction. The transmission of the antiparallel MTJ as shown in Fig. 9b)
again shows some similarities to the minority spin conductance in the parallel MTJ. Only at a
few special IZH-points resonances lead to a high transmission.

From the discussion of the various transmission values we can now draw conclusions on the
expected TMR in a Fe/MgO/Fe MTJ. From the zero-bias conductance of Fig. 9 one obtains
a TMR value of approximately 480%. This value already shows the high TMR also found
experimentally but should not taken too serious as the very sharp peaks in the conductance are
numerically hard to integrate and physically not so relevant. Additionally, this junction is at or
beyond the minimal barrier thickness which could be expected in any experimental setup and a
larger thickness will lead to a relative suppression of all E” # () transmission and therefore to an
increase in TMR. Calculations indeed have obtained TMR values well above several thousand
percent.

3.5 TMR in more complex oxides
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Figure 10: Complex bandstructure of SrTiO5 (a) and BaTiOj3 (b) for electrons at E” = 0.

Advancing beyond MTJs with MgO as a barrier material the investigation of more complex
material combinations for the leads and the insulating barrier is aiming at producing MTJs with
complex behavior, including possibly new physical phenomena and improved functionality. A
special focus at the moment is at complex oxide materials as this class of mostly transition
metal oxides show an extremely rich phasespace of new effects which might be utilized in MTJ
based devices. In particular the idea of including ferroelectric or multiferroic materials into an
tunneljunction seems very promising as this enables to use the strong magneto-electric coupling
phenomena in these materials to easily switch the resistance state of the device or to achieve
multiple resistance states depending on the relative orientation of magnetic and ferroelectric
order[19].

The most promising class of materials in this context are the transition metal oxides in the
perovskite structure as many of them have similar composition and lattice constant and structure
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so that one can grow fully epitaxial multilayers. Much experimental progress has be reported
recently on the growth of such heterostructures and many new effects at these interfaces have
be discovered. As strong electronic correlation effects are important in many of these materials
the theoretical description of the electronic properties and of the electronic transport processes
can be quite difficult. However, some materials like the popular insulator and substrate material
SrTiO;3 or the simple ferroelectric oxide BaTiOs are simple band insulators and their properties
can be described in analogy to the discussion of MgO presented so far.

Comparing the electronic structure of SrTiO3 with that of MgO, in particular looking at the
character of the slowly decaying evanescent states in the barrier, the complex bandstructure as
seen in Fig. 10a) shows some remarkable differences. Even though the material is not a direct-
gap insulator, a rather slowly decaying state can be found at the T'-point. However, several bands
of different effective mass are present both in the valence and the conduction band. Furthermore,
states with very little dispersion in some directions can be identified by flat bands with a huge
effective mass. As shown in Fig. 11 this leads to a rather anisotropic distribution of the decay
constant with a *“cross-like” structure in the center of the Brillouin zone.

Even more unusual tunneling characteristics are expected from a ferroelectric BaTiO3 barrier
(Fig. 10b)). In this case structural distortions connected with the ferroelectric state move the
flat bands into the bandgap, i.e. the top of the valence and bottom of the conductance band are
now formed by such bands. However, due to the high effective mass of these bands, they lead to
strongly decaying states in the bandgap and the states which will dominate the tunneling are no
longer derived from the states at the edges of the valence and the conduction band. This leads to
a rather uniform decay rate for all E||-points, i.e. in contrast to MgO and to SrTiOj; states close
to I" are no longer expected to dominate the tunneling current.

As we will see more examples of novel effects and proposed functionality in these complex
oxide materials in other contributions to this spring school we will not discuss those in more

detail here.
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Figure 11: Smallest decay constant as a function of E” for SrTiO3 at an energy 0.1 eV below
the conduction band minimum. The 2D-BZ with its high symmetry points is indicated as well.

4  Summary

We discussed several different theoretical approaches to TMR. While the Julliere model is most
simple and gives an very intuitive interpretation of the TMR value in terms of the polarization
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its predictive power and consequently also its ability to interpret results is limited. Most pop-
ular is the Landauer picture of tunneling transport in which the quantum mechanical tunneling
probability is the key quantity to determine the conductance. This is the de-facto standard at the
moment in ab initio calculations of tunneling transport. As this approach includes all the details
of the electronic wavefunction and its scattering on the tunneling barrier, the Landauer conduc-
tance is able to describe realistic MTJs and predict TMR values. However, the requirement of
full coherence in the transport process might be a too strong assumption in some cases. One
therefore could expect that Bardeen’s approach being more realistic in this respect while still
capturing all the physics included in the Landauer picture is an ansatz that will be used more
often in the future.

We also applied the Landauer theory of TMR to the most simple and most promising MTJ
Fe/MgO/Fe. Here we discussed the basic electronic properties of Fe and MgO and introduced
the symmetry argument that explains the very high TMR ratios found in such MTJs. How-
ever, one should be aware of the fact that this was only a very basic summary of the results as
we did not discuss or investigated many details such as e.g. the effects the electronic, atom-
istic, magnetic or chemical interface properties or modifications. Neither did we study the bias
dependence of TMR, details of the barrier thickness dependence of TMR, inelastic transport
processes or the temperature dependence of TMR. Some of those effects will be subject of
other contributions to this spring school while some other are still unsolved.

References

[1] G. Binasch, P. Griinberg, F. Saurenbach, and W. Zinn, Phys. Rev. B 39, 4828 (1989).

[2] M. Baibich, J. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet,
A. Friederich, and J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).

[3] M. Julliere., Phys. Lett. A 54A, 225 (1975).

[4] J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett. 74(16), 3273
(1995).

[5] T. Yaoi, S. Ishio, and T. Miyazaki, J. of Magnetism and Magnetic Materials 126(1), 430
(1993).

[6] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Materials 3, 868
(2004).

[7] S.S.P. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang,
Nature Materials 3, 862 (2004).

[8] R. Landauer, IBM Journal Res. Dev. 1, 223 (1957).
[9] M. Biittiker, Phys. Rev. Lett. 57, 1761 (1986).
[10] A. Stone and A. Szafer, IBM Journal Res. Dev. 32, 384 (1988).
[11] J. Bardeen, Phys. Rev. Lett. 6, 57 (1960).
[12] D. Wortmann, H. Ishida, and S. Blugel, Phys. Rev. B 72(23), 235113 (2005).



B2.22 Daniel Wortmann

[13] W. Butler, X.-G. Zhang, T. Schulthess, and J. MacLaren, Phys. Rev. B 63, 054416/1
(2001).

[14] J. Mathon and A. Umerski, Phys. Rev. B 63, 220403/1 (2001).

[15] http://www.flapw.de.

[16] D. Wortmann, H. Ishida, and S. Bllgel, Phys. Rev. B 66(7), 075113 (2002).
[17] V. Heine, Surface Science 2, 1 (1964).

[18] K. Xia, P. Kelly, G. Bauer, 1. Turek, J. Kudrnovsky, and V. Drchal, Phys. Rev. B 63, 64407
(2001).

[19] E. Y. Tsymbal and H. Kohlstedt, Science 313(5784), 181 (2006).



B 3 Spin injection into semiconductors
B. Beschoten
|I. Physikalisches Institut
RWTH Aachen University
Contents
1 1o ol 11 Tox u o] o 1RSSR 2
2 Band structure of direct band gap semiconductors..............ccceeeereennen, 6
3 Optical SEleCtiON FUIES .......ocvviiiiec e 7
4 Electrical Spin INJECTION ......cocvviiieiiece e 8
4.1 SPINLEDS.....i ittt et nreeae s 8
4.2 Spininjection iNt0 BUIK GAAS ........ccveieiiiie e 11
5 Spin precession: from single spin to spin ensemble............cccccevennn. 14
5.1  SiNgle SPIN PreCESSION ....ccueeiuieieciiecie et ste et sreesae e nrs 14
5.2 Spin precession of a spin ensemble ..........cccocoeiieiicic i 15
5.3  Continuous spin injection: Hanlé effect ...........cccoooveveiiii i 16
6 Time-resolved electrical sSpin iINJECiON........cccccceviiie e, 18

RETEIEINCES ..ottt ettt e et ettt e e ee et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 19



B3.2 B. Beschoten

1 Introduction

Modern information technology, i.e. data processing and storage, is based on semiconductors,
such as silicon, and ferromagnetic materials, such as iron. Information processing and
computing takes place in semiconductor transistors and integrated circuits, while information
iIs magnetically stored on high density hard discs. The evolving field of semiconductor
‘spintronics’ is aimed at combining ferromagnets with semiconductors to develop electronic
devices, which integrate information processing with information storage [1,2]. Up to now,
information processing technology is relying on moving electron charges, ignoring the spin
(which is closely connected to magnetism) attached to each electron. In ordinary electric
circuits the spins are oriented randomly and have no effect on the current flow. On the other
hand, spintronic devices create spin-polarized currents in which electrons are in a spin-aligned
state, either spin ‘up’ or spin ‘down’, and use the spin to control current flow.

Spin polarized currents (and therefore electron spins) have nevertheless been of importance
for information storage in read-out heads for computer hard drives during the last decade [3].
The read-out heads exploit an effect called giant magnetoresistance (GMR) [4, 5], which
occurs in multilayer heterostructures consisting of alternating thin films of a ferromagnetic
metal, for example cobalt, and a non-magnetic metal such as copper. The electrical resistance
of such structures can be switched by a magnetic field. When the ferromagnetic material is
magnetized, all magnetic moments of the individual atoms or of the conduction electrons
align in one direction (see Fig. 1, for the sake of simplicity, here, the current is flowing
perpendicular to the magnetic layers like in spin-valve structures [3], contrary to GMR
devices in which the current flows parallel to the layers). Unpolarized electrons from the
circuit line acquire the same magnetic moment direction when passing through the first
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Fig.1  Schematic illustration of a magnetic spin-valve structure consisting of a non-magnetic metal sandwiched by
two ferromagnetic metallic layers of, e.g., different thickness or coercive fields. (a) If the magnetization of the two
ferromagnetic layers is aligned parallel, spin polarized electron currents generated by the first layer can easily enter the
second layer as they scatter into a high density of free electronic states of the same spin orientation leading to a low
resistance state. (b) For oppositely oriented ferromagnetic layers only a small number of free electron states of the
same spin orientation is available leading to a high resistance state [3].
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ferromagnetic layer thus creating a spin polarized current. If this spin current passes through
the second magnetic layer depends on whether the magnetic moments of its electrons are
aligned parallel or antiparallel to the magnetic moments of the ferromagnetic layer. Only for
parallel alignment the spin current can pass freely. With no external magnetic field applied,
the magnetization of both ferromagnetic layers can alternate depending on the thickness of the
intervening non-magnetic spacer metal. Then the flow of a spin polarized current is hindered
when passing the second layer. However, if an external magnetic field is applied, which
aligns the magnetic moments of all ferromagnetic layers in one direction, the barrier to spin
polarized transport is reduced and the resistance drops.

After switching, the magnetic layer in a spin-valve keeps its direction of magnetization until it
Is switched again. This means that the device can act as a memory element and it even retains
its spin configuration when the external power is turned off. Metal-based spintronics therefore
lead to the more sophisticated storage technology of ‘non-volatile’ magnetic random-access
memories (MRAMS). For practical purposes MRAM devices use a magnetoresistance effect
that depends on spin dependent electron tunneling. A tunneling magnetoresistance (TMR)
device has a similar sandwich structure like the spin valves with the nonmagnetic metallic
layer being replaced by a tunneling barrier [6]. Spin dependent tunneling is a quantum-
mechanical property of electrons that allows them to travel across an insulating barrier
between two ferromagnetic layers (a few mono-layer thick aluminum-oxide (Al,O3) is often
chosen as the tunneling barrier) even when, according to classical physics, they do not have
sufficient energy to do so. Like in the spin-valve structure the magnetoresistance in TMR
elements switches from a high to a low resistance for antiparallel and parallel alignment of the
adjacent ferromagnetic layers.

Today’s magnetic read-out heads and MRAMs are made of ferromagnetic metallic alloys.
However, micro-electronics companies are solely oriented to semiconductors and not to
metals. An important goal is therefore to design and to build all semiconductor spintronic
devices using semiconductors, which are compatible with existing chip technology. In
addition, semiconductor spintronics may even offer more interesting possibilities for
information processing since semiconductors have the ability to amplify both optical and
electrical signals, which is not possible in metallic devices.

The spin field-effect transistor (spin FET) has been the model device for many years in the
field of semiconductor spintronics. It was proposed by S. Datta and B. Das in 1990 [7]. A
schematic illustration is depicted in Fig. 2(b). In a conventional FET, a narrow semiconductor
channel is placed between two opposing electrodes, the ‘source’ and the “drain’. A third ‘gate’
electrode is located above the channel. An electrical field caused by a negative voltage
applied to the latter gate drives electrons out of the channel, which turns the channel
insulating. The spin FET has a ferromagnetic source and drain, so that the current injected
into the semiconductor channel is spin polarized. If this spin current is not affected when
traversing the channel, it will pass the ferromagnetic drain if the magnetizations of both the
source and the drain are aligned in the same direction (Fig. 2(a)) (similar mechanism as for
the spin valves in Fig. 1).

In contrast to spin transport through metals, however, in semiconductors the electron spin can
easily precess around magnetic fields at the Larmor frequency. This precession leads to a
continuous rotation of the spin orientation of the electrons when travelling through the
semiconductor channel. Possible magnetic fields may exist due to intrinsic material properties
(spin-orbit-coupling) or may be caused by additional electrical fields (in their rest system the
electrons also see a magnetic field component). These electrical fields can either be built-in
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Fig. 2 (a) Schematic illustration of a ferromagnet-semiconductor-ferromagnet spintronic device. (b) In the Datta-Das
spin FET [7], the electrical field generated by a gate voltage can control the phase (orientation) of the electron spins
by changing their Larmor frequency within the semiconductor channel. Unlike in the all-metal spin-valves
(Fig. 1), the high and low resistance states can be switched by the gate voltage alone leaving the magnetization of the
two ferromagnetic layers unchanged.

fields (caused by confining potentials in semiconductor heterostructures) or external fields
generated by a gate voltage. By carefully adjusting the gate voltage, the orientation (phase) of
the electron spins can therefore be controlled within the semiconductor. When these fields are
adjusted that the electron spins are aligned antiparallel to the drain magnetization, the
electrons get rejected at the drain interface (high resistance state) (Fig. 2(b)). In contrast to the
all-metal spin-valves, the resistance of the spin-FET can be switched from high to low by
means of electrical fields only and no magnetization reversal of the ferromagnetic electrodes
is required.

Up to now, no working spin FET prototype has been built. A major obstacle for its realization
is the difficulty in effectively generating electron spin currents from a ferromagnetic metal
into a semiconductor. In fact, it has been shown by Schmidt et al. [8] that electrical spin
injection (in the diffusive limit) across an ohmic metal/semiconductor contact is only efficient
if the ferromagnetic metal is nearly 100 % spin polarized (all magnetic moments of the
ferromagnet then point in one direction), which is not observed in conventional ferromagnetic
metals such as iron. This obstacle for spin injection can be bypassed by placing a tunneling or
a Schottky barrier between the ferromagnetic metal and the semiconductor [9-16].

Recent optical experiments at various laboratories around the world show that efficient
electrical spin injection into semiconductors can be achieved without the need of spin
polarized tunneling using novel materials, called diluted magnetic semiconductors as a source
for spin polarized carriers [17-19].

In addition to electrical spin injection, researchers must address and answer several important
questions before potential semiconductor spintronic devices such as a spin FET can be
utilized in a new technology :
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e Can diluted magnetic semiconductors or ferromagnetic metals be used in
integrated circuits?

e Can we design semiconductors, which exhibit ferromagnetism with a high spin
polarization far above room temperature?

e How efficient can spin polarized currents be injected into semiconductors?
e What is the role of the ferromagnet-semiconductor interfaces for spin injection?

e On which length scales can spin polarized carriers be transported in
semiconductors?

e How can we control the state of (individual) electron spins by external magnetic
or electric fields inside the semiconductor?

e What are the fundamental advantages of a spin-based vs. a (conventional) charge-
based electronic with respect to speed, power consumption, functionality,
scalability, and profitability?

Besides electrical spin injection, the successful realization of semiconductor spintronic
devices necessitates the ability to preserve spin information over practical length and time
scales inside the semiconductor. Recent observations revealing extremely long spin coherence
times (100 ns) for optically injected spins in non-magnetic semiconductors (GaAs) [20], as
well as spin transport over macroscopic distances (100 um in n-GaAs) [21, 22], and through
semiconductor heterointerfaces [23, 24], has additionally raised the possibility that these spin
coherent properties may eventually enable quantum computational operations in solid state
systems [21] (see also lecture by Th. Schépers). Spin quantum computation is a good example
for a broader goal in spintronics, which is the development of new functionality that does not
exist separately in a ferromagnet or in a semiconductor.

The lecture is devoted to address some of the above issues on semiconductor spintronic. In
particular, it will be focused on the electrical spin injection into 111-V semiconductors. The
next section describes some basic semiconductor properties. In section 3 optical selection
rules are presented. Spin injection into a spin LED and into bulk GaAs are the topics in
section 4. Spin precession of single spins and of spin ensembles will be addressed in section
5. The last section scopes with a time-resolved experiment on electrical spin injection, which
allows temporal phase triggering of the ensemble phase of an electrically injected spin packet.
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2 Band structure of direct band gap semiconductors

Before discussing electrical spin injection into semiconductors and its optical probes, a brief
summary of several basic band structure features of direct band gap semiconductors is given
[26]. As depicted in Fig. 3, direct band gap semiconductors have a band gap at the centre of
the Brillouin zone (7=point). The conduction band (s-like) is energetically separated from the
valence band (p-like) by the gap energy Eq (Eq = 1.51 eV in GaAs at T = 4 K).

In atomic physics, orbital atomic wave functions are classified as s, p, d, etc., according to
their orbital angular momentum |. The p states (I = 1) are six-fold degenerate while the s states
are two-fold degenerate (I = 0). These states can be chosen to be eigenstates of |, the z
component of |. The eigenvalues of I, are known as the magnetic quantum numbers m; with
my =1, 0, -1 for the p states. On the other hand, the spin angular momentum s has the
eigenstates s, with eigenvalues mg = + 1/2, — 1/2. The spin-orbit interaction couples the orbital
angular momentum | to the spin momentum s by

HSOZﬁl'S, (1)

where A is the spin-orbit coupling constant. The eigenfunctions of Eq. (1) are eigenstates of
the total angular momentum j =1 + s and its z component j,. For p states with | =1 and s = 1/2
the eigenvalues of jare: j=1+s=3/2 and j =1-s=1/2. The eigenvalues of j, (denoted by
m;) can take the 2j + 1 values j, j—1, ... , —j+1, —j. The spin-orbit interaction splits the
j = 1/2 state from the j = 3/2 state in the valence band of the semiconductor (Fig. 3, right
panel). The splitting is known as the spin-orbit splitting 4, of the valence band at the /-point,
which is typically hundreds of meV (0.35eV in GaAs). States with j=3/2 are four-fold
degenerate and are called heavy and light hole states with j, =m; = £3/2 and j, =m; = £1/2,
respectively. These hole states are energetically closest to the conduction band, and transitions
between these states and the conduction band states dominate the majority of optical

measurements.
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Fig. 3 Band structure of a direct semiconductor (e.g. GaAs): s-like conduction band and p-like valence band (left),
band structure including spin-orbit coupling (right).
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3 Optical selection rules

Photon absorption and emission (luminescence) are powerful tools for characterizing the band
structure of semiconductors. The hole to electron transition obeys selection rules which
preserve the angular momentum of the incoming or outgoing photon. If the photons are right
or left circularly polarized they carry an angular momentum of + 1 or — 1 (denoted by o+ and
o), respectively.

The optical selection rules for absorption or emission of circularly polarized photons near the
band edge between j = 3/2 hole states of the valence band and j = 1/2 electron states of the
conduction band are illustrated in Fig. 4.

1
/ 2
electrons
holes
;23
2 ) 3 1 1 3
Jz=—7% - +— +—
2 2 2 2

Fig.4  Optical selection rules between j = 3/2 holes (valence band) and j = 1/2 electrons (conduction band). The
probability for heavy hole transitions (j, =3/2) is three times as large as for the light hole transitions (j, =1/2).

Four different absorption and emission processes are allowed. Two of them involve heavy
hole states, the others involve light hole states. It is important to note that an electron in the
valence band with spin j, =-3/2 leaves a hole of opposite spin after it is excited into the
conduction band. The absorption process can thus be viewed in two equivalent ways: (1) a o+
photon transfers its angular momentum to an electron, promoting it from j,=-3/2 to
Jjz=-1/2, or (II) a o+ photon creates an electron-hole pair with a total z angular momentum
(Jz heavy hole T Jz, electron = 3/2 — 1/2 = + 1) equal to that of the photon (+ 1).

The absorption of o+ photons will create spin — 1/2 electrons for heavy hole transitions and at
the same spin + 1/2 electrons for light hole transitions. As the absorption probabilities for both
transitions differ by a factor of 3, the absorption of o+ photons results in a large net electron
spin polarisation of — 50 %, where the sign reflects the relation between photon and spin
polarization.

The inverse process, which is the recombination of electrons with holes, obeys the identical
selection rules. A spin — 1/2 electron can recombine with a — 3/2 heavy hole state and emit a
o* photon. The luminescence emitted by spin polarized electrons recombining with
unpolarized holes will thus be circularly polarized. These processes allow the conversion of
spin polarization into an optical polarization. In particular the luminescence process can be
used as a spin-detector for electrical spin injection [10][11][18][19].
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4  Electrical spin injection

Early attempts to electrically inject spins into semiconductors using ohmic contacts only
yielded small signals that could be traced back to parasitic effects [27]. After it became clear
that efficient electrical spin injection is prohibited by the conductivity mismatch between the
metal and the semiconductor [8](see also lecture by J. Fabian), a large variety of successful
spin injection contacts have been developed. Many of these include spin-polarized tunneling
that matches the resistance of the ferromagnetic contact to the semiconductor channel through
an oxide tunnel barrier, through a highly doped Schottky tunnel barrier or through a Zener
tunnel junction. Half-metallic contacts are a further theoretical possibility to obtain electrical
spin injection. Both diluted magnetic semiconductors (DMS) and ferromagnetic
semiconductors can be considered being halfmetallic at low temperatures. The materials
resulted in the highest reported spin polarization, which exceeds 90% [19, 28]. “Traditional”
half-metallic injectors such as Heusler alloys, CrO,, Fe3O4 or Lay;3Sri3MnO3 have also been
used. However, the few experiments testing Heusler alloys as injectors all used tunneling
barriers and yielded smaller spin injection efficiencies than obtained for regular ferromagnets.
The largest room temperature spin polarization (70 %) has been obtained for epitaxial
Fe/MgO injectors on GaAs [15].

Most experiments on electrical spin injection have been performed on spin LEDs (light
emitting diodes) as they straightforwardly allow a quantitative analysis of both the spin
polarization in the semiconductor after injection (see section 4.1) and the spin injection
efficiency. In contrast, for studying spin injection and spin transport in more complex devices
either electrical (magneto-transport) or magneto-optical methods are applied for spin
detection. The latter method will be discussed in section 4.2,

4.1 Spin LEDs

A spin LED consists of a rather simple semiconductor p-i-n like heterostructure (Fig. 5) in
which a hole doped p-layer is separated from an electron doped n-layer by an undoped
quantum well. The quantum well has the lowest energy gap (see Figure 5(b)). When the spin
LED is reverse biased, hole and electron currents are injected into the quantum well from the
p and the n regions, respectively. As both electrons and holes are spatially overlapping in the
guantum well layer (here GaAs), they can recombine and emit photons of energies equal to
their energy difference. Such a process is called electroluminescence (EL).

In conventional LEDs, both electron and hole currents are unpolarized. This results in
quantum well emission of unpolarized light, because all carrier spin states are equally
populated, and all dipole-allowed radiative transition occur with equal probability. In a spin
LED, spin polarized carriers are injected from one magnetic contact into the quantum well,
where they radiatively recombine. As discussed in section 3, radiative recombination of spin-
polarized carriers results in emission of right and left circularly polarized light as determined
by the selection rules. The light polarization is usually analyzed in the emission direction
along the surface normal of the quantum well.

If electrons are injected from a ferromagnetic metal such as Fe (Fig. 5(b)), they become spin
polarized in the n-layer with an electrical spin polarization of
n"—n*

Pe - 1 (2)
I’]T + I’l¢
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Fig.5 (&) Layer structure of spin LED. A Schottky barrier is placed between the ferromagnetic Fe injector and a
p-i-n diode with an embedded undoped GaAs quantum well. (b) Corresponding band diagram. If the spin LED is
reverse biased (Ug < 0), spin polarized electrons tunnel through the Schottky barrier (1) and lose excess energy by
momentum relaxation (2). The polarized electrons recombine with unpolarized holes from the p-doped layer in the
GaAs quantum well. The emitted electroluminescence (EL) will be detected through the Fe layer under normal
emission.

where n"and n* is the spin density of spin-up and spin-down electrons of the ferromagnet. If
the j = 3/2 hole states are degenerate (see Fig. 4), then the recombination with unpolarized
holes yield the following optical polarization of the EL intensity

-1 1n'-nt 1
P41 2nT4nt 2%
Here, I"and |~ are the energy dependent intensities of the right (o) and left (o) circularly
polarized components of the EL intensity, respectively.

3)

In order to overcome the conductivity mismatch between the Fe layer and the p-i-n diode a
Schottky barrier may be placed at the interface (Fig. 5(a)). It consist of a 15 nm thick
transition layer with an silicon doping gradient from n(Si) = 5 x 10%cm™ to n(Si) = 1 -
5 x 10™°cm™ followed by a 15nm thick highly doped n(Si) = 5 x 10'%cm™ layer. This
approach was first described in Ref. 12. It minimizes the width of the interfacial depletion
region, which results in a large tunnel current through the Schottky barrier under reverse bias.
The epitaxial Fe layer is 5 nm thick and is capped with Al. Its magnetic easy axis is oriented
in the layer plane. The moderate thicknesses of the metal layers guarantee optical
transmissivity, which is important for EL detection.

The EL spectra are recorded by the spectrometer with a liquid nitrogen cooled CCD detector.
Their helicities are decomposed by a circular polarization analyzer which consists of an
achromatic quarter wave plate and a calcite polarizer. Fig. 6(a) shows the EL intensities
I"and |~ which were taken under reverse bias (Upc =-2.2 V) at T =25 K and a magnetic
field of B=0T and -6 T. The magnetic field was applied perpendicular to the quantum well
plane, i.e. perpendicular to the in-plane magnetic easy axis.

At B=0T, both spectra are identical, while a strong intensity difference is observed for
B=-6T, which unambiguously demonstrates electrical spin injection. The optical
polarization is extracted from Eq. 3 by integrating the full spectra for each light helicity. The
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Fig.6 (a) EL spectra of GaAs emission from spin LED. The spectra are recorded under normal emission through
the Fe layer (see Fig 5(B)). The magnetic field is applied in Faraday geometry, i.e parallel to the detection direction.
(b) Magnetic field dependent optical polarization as determined by Eq. 3. Note that the optical polarization reaches
values of 27 %.

resulting Pow(B) is depicted in Fig 6(b). The optical polarization equals zero at B=0 T. This
Is expected since the magnetization vector is oriented in the layer plane for B =0 T. Electron
spins, which are injected from the Fe layer into the quantum well are therefore also aligned
in-plane. According to optical selection rules, both |"and |~ intensities are not selective to
the in-plane spin orientation under perpendicular light propagation direction, but only to out-
of-plane spin components. The increase of Py for positive fields is therefore proportional to
the hard axis out-of-plane magnetization loop (compare to Fig. 7) and saturates at B ~2.2 T.
The decrease of Py at even larger fields is not related to the magnetization of the Fe layer but
rather linked to the Zeeman polarization of the quantum well. Note that the optical
polarization reaches values of 27 %.
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4.2 Spin injection into bulk GaAs

In the previous section we have seen that spin LEDs are ideal devices to determine electrical
injected spin polarizations. However, the injected spins get trapped and annihilated in the
guantum well detection layer. In more complex devices (see Fig. 2), electron spins need to be
transported over macroscopic distances after they have been injected into the semiconductor
channel. Moreover, spin manipulation and subsequent electrical read-out might be important.
In the next paragraph, we will discuss the magneto-optical Kerr effect, which is an ideal tool
to probe and to image electron spins and spin currents in semiconductors.

Magneto-optical Kerr effect

In order to probe the net magnetization of electron spins, magneto-optical techniques can be
used which either measure the Kerr or the Faraday rotation. Simply put, the polarization of
the incident linearly polarized light is being rotated after passing through the sample (Faraday
rotation) or after being reflected at the sample surface (Kerr rotation) (see Fig. 8). In both
cases the resulting polarization is no longer strictly linear but rather slightly elliptic. Both
effects can theoretically be described by Maxwell’s equations through off-diagonal elements
of the dielectric tensor. The strength of the polarization rotation is strongly enhanced in the
spectral vicinity of optically-allowed band-to-band transitions. The origin of the large
resonant Faraday rotation in semiconductors is the Zeeman effect. In (100) GaAs this
corresponds to the well-known (spin-up and spin-down) splitting of the s-state conduction
band electrons, and the fourfold splitting of the p-type valence band into spin-up and spin-
down light- and heavy-holes. Thus the optical transitions associated with left and right
circularly polarized light are split in energy. Consider two such Zeeman-split states whose
absorption resonances appear as shown in Fig. 9(a) assuming a Lorentzian lineshape for
simplicity. Their associated indices of refraction which are also split in energy (Fig. 9(b)) give
rise to a large resonant Faraday rotation shown in Fig. 9(c) through the relation
O (w) cn (w)-n, (w). In practice, the spectral shape of the Faraday resonance strongly

depends on the exact lineshape of the absorption edges and is rarely so symmetric.

Fig.8 () (geometries of the Faraday effect (left) and the magneto-optical Kerr effect (right). For both effects the
sample’s magnetization causes a rotation of the plane of polarization and a slight ellipticity.
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Fig.9  (a) Idealized Zeeman-split absorption resonances (o, ) corresponding to right (o) and left (o)
circularly polarized light. (b) Associated indices of refraction (7.,7 ). (c) Resonant Faraday rotation.

It is important to emphasize that the Kerr effect can be used as a probe of any spin imbalance
near the chemical potential of the semiconductor. For this technique, no light emission from
electron hole recombination is needed.

In spin transport devices as depicted in Fig 2, electron spins are either injected into a
2-dimensional electron gas or into a bulk material. A heterostructure for the latter case is
depicted in Fig. 10(a). The Schottky barrier has a similar doping profile as in the spin LED.
This guarantees a high spin polarization after injection. Spins are injected into a 5um thick
n-doped GaAs layer with a Si doping concentration of 2 x 10'® cm™. This is the optimum
doping for spin transport studies over large distances as the spin coherence length may exceed
100 um at low temperatures [21]. After tunneling through the Schottky barrier (step 1 in Fig.
10(b)), electron spins lose their kinetic excess energy by momentum relaxation (step 2 in Fig.

a b
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Fig. 10 (a) Layer structure for spin injection device. A Schottky barrier is placed between the ferromagnetic Fe
injector and the bulk n-GaAs detection layer. (b) Corresponding band diagram under reverse bias. Spin polarized
electrons tunnel trough the Schottky barrier (1) and loses excess energy by momentum relaxation (2).
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10(b)), while they drift into the n-GaAs layer.

Fig. 11(a) illustrates a lateral spin injection device as used by S. Crooker et al. [13]. It consists
of two Fe-GaAs Schottky contacts separated by an optimally doped n-GaAs bulk channel.
When applying a DC bias, a spin current is generated from one of the Schottky contacts. The
injected spins are oriented parallel to the magnetization direction of the Fe injector, i.e. they
initially point in their propagation direction (x-direction). The spins shall be imaged by
magneto-optical probes. A microscope objective is used with laser light propagation in the
perpendicular to plane direction. Note that the injected spins cannot be seen as magneto-
optical probes are only sensitive to an out-of-plane spin component in this polar configuration
(similar optical selection rules as for the spin LED).

The spin direction can, however, be rotated towards the observation direction by Larmor
precession around a small perpendicular magnetic field applied along the y-direction. The
polarization of the injected spins is probed by means of the polar Kerr rotation angle ®k(X, y)
of a linearly polarized reflected laser beam, which is scanned over the sample. The resulting
map of the Kerr rotation angle is shown in Fig. 11(b) for By = 3.6 Gauss at a temperature of
T =4 K. Note that @k is largest (see color code white) near the injector contact and gets
diminished (color code changes to light blue) along the electron flow direction. As @ is
directly proportional to the spin polarization in the GaAs, it is a direct measure of the decay
length of the injected spin polarization (~50 pm), which is much less than the 300 um channel
length of the GaAs. Therefore, the injected electrons lose their polarization long before they
reach the opposite drain contact. Surprisingly, there is also a spin signal visible near the right-
hand side of Fig. 11(b) in the GaAs channel just in front of the drain contact, which results
from spin filtering and spin accumulation.

(a)
B&"
X Electron flo d'reét‘on
n-GaAs W direct
| e
(b)

Fig. 11 Spin current flowing between Fe
injectors contacts in an n-GaAs channel
measured  with  polar  Kerr  rotation
microscopy. (a) The spins are continuously
injected collinear to the magnetization vector
of the Fe layer. A small magnetic field B,
along the y-direction rotates the spins in
GaAs towards the out-of-plane direction. (b)
False color plot of Kerr rotation angle ® as
measured along the GaAs channel (adopted
from [13]).
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5 Spin precession: from single spin to spin ensemble

In the previous section it has been shown that spins can be generated into bulk GaAs by spin
injection from a ferromagnetic source. Their initial spin orientation near the
ferromagnet/semiconductor interface is defined by the magnetization direction of the
ferromagnet. We have seen that the net spin orientation of the spin polarization in the
semiconductor channel can be controlled by a transverse magnetic field, i.e., it rotates into the
out-of-plane direction at By, = 3.6 Gauss. The precise control of the spin orientation (its
quantum mechanical phase) is of utmost importance for many device applications (see Fig. 2).
In the above DC experiments individual spins start to precess at all times because spins are
injected continuously in the time-domain. This, together with a velocity distribution of the
electrons (diffusive transport regime) yields to a rapid depolarization of the steady-state spin
polarization (the Hanle effect). As a result, full Larmor precessions are usually not observed
in injection experiments.

In order to understand the Hanlé depolarization in more details, single spin precssion and spin
precession of ensembles are discussed in the next two subsection, while the Hanlé effect will
be addressed in subsection 5.3.

5.1 Single spin precession

In the above experiment (see Fig. 11), electron spins are injected into GaAs with a spin
orientation along the x-direction, while a perpendicular magnetic field is applied along the
y-direction. In this “Voigt geometry” the individual spins can be viewed as a coherent
superposition of the eigenstates for spin-up and spin-down defined by the magnetic field
direction. The corresponding energy eigenvalues are

E. =+ enB
N om (4)
The resulting spin splitting can be related to the Larmor frequency . by
o =348 B 5)

h y

As the spin states along the y-axis (quantization axis) are energy eigenstates, the application
of the time-evolution operator

. a)LSyt

A(t,0) = exp(—lTJ (6)

on the eigenstates ‘sy;T> and ‘sy;¢> yields the states themselves independent of time. Along

the field axis (longitudinal direction) these quantum-mechanical spin states are thus
stationary. Any loss of coherence is induced by coupling of those states with the environment.
Applying the time-evolution operator on the spin states perpendicular to the magnetic field
direction

[sxi7)=

[[syit)+[syi)]
USV?THSV?N

(7
[sxi) =

ol -
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and

|Sz?T>=%USv;T>” [syi)]

1 _ (8)
|sz;¢>=ﬁﬂsyﬁ>—|‘sy;i>]
yields the following expectation values [30]:
<sx>=%hcos(a)|_t), <sz>=%hsin(a)|_t), and (s;)=0. (9)

The time-evolution of the spin vector may be viewed semi-classically as the Larmor
precession of the classical spin vector in a plane perpendicular to the applied field. This
results in an oscillatory cosine projection (Eq. (9)) of the electron spin polarization along its
injection direction. Quantum-mechanically, such spin precession can be viewed as arising
from the excitation of a coherent superposition of the spin states energy split by the magnetic
field along the y-direction, which results in quantum beatings between the spin-up and the
spin-down eigenstates. The coherent state gets destroyed once the phase relation between the
two eigenstates is lost. The corresponding decoherence time is called To.

5.2 Spin precession of a spin ensemble

In most experiments there is not a single spin state but rather a spin ensemble with an
ensemble magnetization M. We again assume a constant magnetic field along the y-direction.
The system then consists of a multiple of the single spin quantum system given in the
previous section. We introduce T,* as the transverse spin dephasing time of the spin
ensemble. It differs from the coherence time T,, if the single spin systems are not accurately
copied, but exhibit small deviations for example due to inhomogeneous effects such as
internal inhomogeneous magnetic fields.

We furthermore assume that all the spins are impulsively generated at time t = 0 along the x-
direction. Taking spin dephasing into account, the temporal evolution of the ensemble
magnetization can be described by

Ms (t,B)= Aexp(—Tt—*]-exp(ia)Lt). (10)
2

with

Mg x (t, B)=%e(Ms)

Ms.2 (t, B) = 3m (M ). (1)
Fig. 12 (a) and (b) shows simulations of Ms «(t, B) and Ms, (z, B), respectively. The material
parameters T,* and the effective g-factor are set to typical values for bulk n-GaAs. As
expected from Eq. 5, the spin precession frequency increases with By. The exponential decay
is a result of spin dephasing. Note that there is no spin precession at B =0 mT. The spins
therefore remain along the x-direction and cannot be observed in the y-direction

(3m (Mg, B=0mT)=0).

It is important to emphasize that these time-domain information require an impulsive
excitation of the spin ensemble, which triggers the ensemble phase. Such a phase triggering
can be realized by ultrafast laser pulses [20-24]. In fact, time-resolved optical pump-probe
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Fig. 12  Larmor precession of spin ensemble after impulsive excitation as a function of time t. The projection of
the ensemble magnetization M; parallel (a) and perpendicular (b) to both the excitation direction and the magnetic
field is plotted for the same injection rate r,. Typical bulk GaAs values of the spin dephasing time T,* = 20 ns and
the electron g-factor (g = -0.41) are used.

experiments are nowadays standard tools for studying spin precession in the time-domain.
Note that there is no such phase triggering DC electrical spin injection experiments as spins
are injected at all times. In the next section, we will discuss the crossover from impulsive to
continuous spin injection and its implications on the Kerr effect.

5.3 Continuous spin injection: Hanlé effect

For continuous spin injection we assume a constant spin injection rate along the x-direction.
The resulting net magnetization Mcw(B) is calculated by integrating the single spin systems
over time t:

My = A’j I exp(—_l_t?]exp(ia)l_t)

i (12)
= A’rSTZ*LLZ2
1+ (o, T7)
P 1
MCW,X(B):me(MCW(B)):ArsTZ 2
1+(a)|_T2)
~ ’ * wLTZ* (13)
MCW,Z(B)ZJm(Mcw(B))ZArsTZ 2
1+ (e T5)

The simulated transverse to field magnetization components Mg, «(B) and Mg, ,(B) are
plotted in Fig. 13. (a) and (b), respectively, for equal rs and A’. In contrast to the impulsive
excitation (see section 5.2), now the net magnetization is in dynamic equilibrium and does not
dependon B and T,.

For large |B|, the net magnetization vanishes for both observation directions as the spins
increasingly occupy all precession angles within their dephasing time T, and start to average
out each other. This process is called Hanlé depolarization. Note that this is not a quantum
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Fig. 13  Hanlé depolarization for continuous spin injection of electron spins with different spin dephasing times
T,* (g-factor: g=-0.41). The external magnetic field B is perpendicular to the spin injection direction. The

projection if the total magnetization M., parallel to the injection direction (a) and perpendicular to both the injection
direction and the magnetic field direction (b) is plotted for the same injection rate.

mechanical decoherence. While the individual spins may still be coherently precessing, the
ensemble macrospin dephases, i.e. the macrospin magnetization vanishes according to phase
spreading. The characteristic width of the Hanlé depolarization curve is 4B = @ T5 , which can

be used to determine T, close to B = 0, if o is known.

The Hanlé curves can easily be measured by the Kerr effect. Fig. 14 shows a series of Hanlé
curves, which were measured on the lateral spin injection device (see Fig. 11) at various
distances measured from the left ferromagnetic injector. All Hanlé curves are asymmetric,
which is consistent with the observation direction along the z-axis, which is perpendicular to
both the external magnetic field direction (y-axis) and the spin direction of the injected
carriers (x-axis). Close to the injector contact (8 um), the Hanlé curve has the largest
amplitude and exhibit the typical shape as shown in Fig. 13(b). The amplitude decreases with

8 um

- #{k,f— 24
= I s

8 ! 40

¥ [ Ea

D =0

Fig. 14 Kerr rotation as a function of transverse
72 magnetic field B, measured as different laser spot
o~ Y w38 positions (compare to Fig. 11). The distance between

the laser spot and the Fe injector along the x-

B "T'W1 20 direction is given (adopted from [13])
" i i L i 1 i
-30 0 30

B}, (Gauss)
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increasing distance to the contact, which results from spin dephasing during spin transport.

Surprisingly, additional oscillations become visible at larger distances. The oscillations
indicate that the Hanlé depolarization gets partly be compensated during spin transport. By
this compensation the macrospin of the ensemble (probed within the laser spot) is not
completely dephased during the first presession cycle. In diffusive transport, the finite spin
dephasing time acts as a velocity filter of the electron spins. This in combination with the
propagation distance (diffusion time) make the observation of the macrospin precession
feasible.

6 Time-resolved electrical spin injection

In the previous chapter we have seen that the initial spin orientation near the
ferromagnet/semiconductor interface is defined by the magnetization direction. Thus all
injected spins initially have the same phase. However, the ensemble phase gets rapidly lost in
a transverse magnetic field. In the following it will be shown that the Hanlé depolarization
can be strongly suppressed by electrical phase triggering of the ensemble phase. This phase
triggering is realized by fast current pulses, which electrically generates spin packets during
injection from the ferromagnetic source into the n-GaAs. Spin precession can be optically
probed in n-GaAs by time-resolved Faraday rotation.

The measurement setup and sample geometry are depicted in Figure 15. In the electrical
pump / optical probe experiment, spins packets are injected by current pulses with a width of
2 ns at a repetition time of 125 ns. An injected spin packet is illustrated in Fig. 15 in the
n-GaAs as a spin polarized sheet layer. Note that all spins are now spatially and temporally
phase triggered. Linearly polarized ps laser pulses at normal incidence to the sample plane
and phase-locked to the electrical pulses monitor the £z component of the injected spins by
detecting the Faraday rotation angle ®¢. The time-delay At between the current pump pulses
and the optical probe pulses can be adjusted by an electronic phase shifter.

At zero magnetic field, the spins will not precess, but rather remain in the in-plane orientation.
However, when a finite magnetic field is applied, the spins start to precess into the

(@)

Fig. 15 Electrical pump and optical probe setup for time-resolved spin injection experiments. (a) A phase
triggered spin packet in electrically injected from the ferromagnetic Fe injector into n-GaAs by a fast current pulse.
(b) Spin precession in a transverse magnetic field by a time-delayed ps laser pulse, which measures the Faraday
rotation in polar geometry.
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Fig. 16 Time evolution of Faraday rotation after
impulsive electrical spin injection across an
Fe/GaAs Schottky barrier as a function of pump
probe delay At with vertical offsets for clarity.
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observation direction (see Fig. 15(b)). If the ensemble phase was indeed temporally triggered
multiple Larmor precessions of the ensemble should be observable (compare to Fig. 12).
Several time-resolved Faraday rotation data are shown in Fig. 16 for various magnetic fields.
Most strikingly, the expected Larmor precessions of the injected spin packets are clearly
observed, demonstrating that the current pulses indeed trigger the macro-phase of the spin
packet.
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1 Introduction

Spin electronics relies on the fundamental principle that electrons carry not only charge, the
property exploited in traditional semiconductor devices, but also spin. In semiconductor de-
vices, an electric field is used to control the transport of conduction electrons, and hence, elec-
trical currents. In magnetic materials, where spin-up and spin-down electron populations are
unequal, an electrical current should naturally be spin-polarized. In this case, a magnetic field
can be used to manipulate spin polarized electrical currents providing an additional channel of
information and an additional degree of freedom for designing novel “spintronic” devices.

One major class of spintronic devices is based on spin polarized electron tunneling. Electron
tunneling is a purely quantum mechanical phenomenon in which electrons can pass from one
conducting electrode, through a thin insulating layer, into a second conducting electrode. Spin
polarized tunneling is in principle no more complex than it sounds, it simply refers to a tunnel-
ing device in which the tunneling current has more electrons of one spin orientation than of the
other. In practice, there are several ways to accomplish this. The lecture at hand primarily fo-
cuses on the use of “spin filter” tunnel barriers, barriers which have a different degree of opacity
for each spin state. Thus, even if the source of electrons (i.e. the metallic electrodes) have no
spin polarization, the resulting tunneling current will.

An interesting aspect of spin polarized tunneling arises when two magnetic materials are used in
a trilayer tunneling device, typically referred as a magnetic tunnel junction (MTJ). In ferromag-
netic materials, the spin orientation of the majority of electrons can be defined by the orientation
of the magnetization. An electrical current flowing through a magnetic tunnel junction depends
on the relative direction of magnetization in the magnetic layers: If both magnetic layers have
parallel magnetization, a large tunnel current can flow, resulting in a low electrical resistance
of the tunnel device. By switching from a parallel to an antiparallel configuration, a strong
increase in electrical resistance is encountered. Since the relative magnetization (i.e., parallel
or antiparallel) can be set by an external magnetic field, this means that the current through the
tunnel junction can be modulated by the external magnetic field. Such devices display magne-
toresistance, and comprise one class of spintronic devices in that they rely on the generation
and manipulation of spin-polarized currents.

A natural question induced from the use of the word *“device” is how can magnetoresistance
be utilized? In principle, the resistance state of a magnetic tunnel junction, once set, can be
maintained in the absence of a magnetic field or any power input — it “remembers” what resis-
tance state it is in. One magnetization state may be used to signify a logical “0” and the other a
logical “1”. Consider an array of a large number of tunnel devices, where each element can be
addressed individually. With appropriate addressing and recording schemes, in principle such
an array provides the functions of a random access memory (RAM), but one which requires no
power to maintain information, in contrast to currently used memory. Such a magnetic RAM
(MRAM) can replace not only hard disk drives, but conventional RAM as well.

This lecture is intended to provide a review on the “spin filter” effect in magnetic tunnel barri-
ers and its application in (magnetoresistive) spintronic devices. A description of the spin filter
phenomenon and the fundamental physical mechanism will be given in Chapter 2. Spin filter
tunneling occurs in (ferro-)magnetic insulators, a material class whose electronic and magnetic
properties will be introduced. Examples of how to quantify the spin filter effect will given and
the basic operating principle of spin-filter magnetic tunnel junctions explained. Chapter 3 serves
as an overview on how to apply spin filters in spintronic devices. We will exemplarily discuss
device architectures whose operating principles go beyond standard magnetic tunnel junctions.
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2 Spin filter tunneling

2.1 Phenomenological Description

The tunnel effect is a well-known example which reveals the quantum mechanical nature of
electrons. It describes the phenomenon, that an electron’s wavefunction can penetrate a po-
tential barrier which is higher than the electron’s total energy, whereas classically their energy
would be insufficient to pass that region. We will introduce the tunnel effect in solid state
structures, in which an electrical current can flow from one electrode, through an insulating
barrier, into another electrode. The most straightforward realization of this structure is a metal-
insulator-metal (M/1/M) trilayer, commonly called a tunnel junction. The tunnel barrier thereby
is modeled as a potential step as shown in Figure 1(a). Using the Wenzel-Kramers-Brillouin
(WKB) approximation, the electron’s transmission probability 7'( £') through the tunnel barrier
of height &, and thickness d decays exponentially with increasing thickness as

T(F) x exp (—Qd QH—T(@O - E)), (1)

with m being the electron mass and % the Planck constant. In most cases, electron tunneling in
M/I/M structures is studied by observing the current (or its derivative) as a function of applied
voltage across the junction. Without a voltage applied, the Fermi levels of the two metals will be
at the same energies for the two electrodes. When a bias voltage is applied across the junction,
one Fermi level will shift by eV with respect to the other (Figure 1(b)). The number of electrons
tunneling from one to the other metallic lead is given by the product of density of states N (E) of
the left and right electrodes, weight by the transmission probability 7'( £). Moreover, one has to
take into account the probabilities that the electronic states in the left lead are occupied, f(E),
and the states in the right electrode are empty, 1 — f(E + V'), where f(FE) is the Fermi-Dirac
function. The total current I flowing from the left (/) to the right () electrode is thus given by

+o00

(V)= N{(E)N,.(E 4 eV)|T|*f(E)1 — f(E +eV)]dE. @)
In conventional M/I/M tunnel junctions, two nonmagnetic metallic electrodes are separated
by an insulator typically provided by a nonmagnetic metal oxide (e.g., Al,Os). In that case,
the tunnel probability 7'(F) decays with barrier thickness in the same way for electrons with
spin-up and spin-down orientation. If, however, a (ferro-)magnetic insulator is inserted as the
tunnel barrier, the tunnel probability becomes spin-dependent. In a magnetic barrier, electrons
are selectively transmitted due to its spin orientation, meaning that either spin-up or spin-down
spins tunnels preferentially. This mechanism is referred as “spin-filter tunneling” and gives rise
to a spin-polarized tunnel current. In this context, the spin polarization P of the tunnel current

is defined as
p-tizh (3)
IT + Il
Spin filter tunneling occurs in magnetic insulators, i.e. materials that have a wide bandgap
around the Fermi level and, in addition, show spontaneous magnetic ordering when cooled
below a critical temperature 7. As a consequence, the conduction band experiences a mag-
netic exchange splitting AF,., if the temperature falls below the Curie temperature T¢.. Thus,

the conduction band is split into a spin-up (7) and a spin-down () sublevel, as illustrated in Fig.
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1(c). The effective barrier height of an insulating tunnel barrier corresponds to the energy dif-
ference between the Fermi level and the bottom of the conduction band. In a magnetic insulator,
the spin-split conduction bands therefore effectively represent two different barrier heights, one
for spin-up electrons (®) and one for spin-down electrons (). Compared to the nonmagnetic
case, where ¢, denotes the average barrier height above T, the spin-dependent barrier heights
$, | are given by

1
Dpy = Do+ S AE,. (4)

In many magnetic materials, one can treat the electronic transport of spin-up () and spin-down
(1) orientation separately. In addition, one generally assumes that the spin orientation is con-
served during a tunnel process. Thus, two different transmission probabilities for spin-up and
spin down electrons 7} | (E) must be considered. In a magnetic barrier, the tunneling proba-
bility T'(E) is different for the two spin directions 7' (E) # T|(E) because they exponentially
depend on the corresponding barrier height ®;(}), as evident from Eqn.(1). This exponential
dependence of T'(E) on the spin-dependent barrier heights finally leads to two very different
currents [; # I, for spin-up and spin-down electrons (recall Eqn.(2)), even with modest dif-
ference in the barrier heights |[A®| = |®, — ®|| = AE,.. Therefore, a very efficient spin
filter process is at work, that in principle can result in a fully spin-polarized tunnel current
(P = 100%). It is obvious from this simple model, that the magnitude of exchange splitting
AF,. represents a substantial property of spin filter materials, since it is directly related to the
spin filter efficiency. In the thickness regime of tunnel barriers of few nanometers, one has to
take into consideration that A F,. may be modified compared to bulk material.

Up to now, we have focused on a spin-dependent barrier height as the source of tunneling
spin polarization. Apart from spin filter tunneling, there are also different routes to realize spin-
polarized tunnel currents. One way is to use (ferro-)magnetic materials, which naturally provide
a spin polarized density of states. One may anticipate that with magnetic electrodes in a M/I/M
junction the tunnel current naturally is spin-polarized. Using magnetic electrodes is indeed the
most conventional approach to realize spin polarized tunneling, and is applied in standard tunnel
magnetoresistance (TMR) devices. In the following section, we will briefly review alternative
routes to produce spin polarized tunnel currents.

2.2 Routes to spin polarized tunneling

The conventional approach realizing spin-polarized tunneling is by tunneling from a ferromag-
netic metal through a nonmagnetic insulating barrier. Typically, 3d transition metals are utilized
as the electrode material, because they provide a spin-split density of states /V at the Fermi level
Ny(EFr) # N|(EF). As the barrier material in most cases polycrystalline or amorphous Al,O;
is used. Contrary to a magnetic barrier, which actively filters spins, the nonmagnetic barrier rep-
resents the “passive” element in a conventional tunnel device that simply selects the electron’s
momentum. Since ferromagnetic metals like Fe or Co provide only modest spin polarizations
around P = 40% at the Fermi level, currents with just limited spin polarization can be realized.
A way to optimize the efficiency of the electrode as the source of spin-polarized carriers is to
use so-called half-metals. These materials possess a finite density of states at the Fermi level
for one spin direction and a gap for the other spin orientation, resulting theoretically in a 100%
spin polarization. Among the materials that have been predicted as half-metals are 3d transition
metal oxides (e.g., CrO, and Fe;O,), manganites (e.g., La;_,Sr,MnQOs3) and the material class
of Heusler alloys. In practice, however, many of these materials are difficult to stabilize as or-
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Fig. 1: Tunneling in metal-insulator-metal structures. (a) Electron wave functions decay ex-
ponentially in the barrier of height ®, and thickness d, and for thin barriers, some intensity
remains at the right side. (b) Potential diagram for a M/I/M structure with applied bias voltage
eV. The bias voltage defines an energy window of electronic states contributing to the tunnel
current. (c) Principle of spin-filter tunneling with magnetic barriers. Below the Curie tempera-
ture T of the spin filter, the conduction band is exchange split by an amount A E,.. resulting in
two spin dependent barrier heights ;| = &, £ 1/2AE,..

dered crystalline structures and even in perfect crystals, a complete spin polarization can only
be expected at 7" = O K.

A totally different mechanism of spin polarized tunneling is observed in epitaxial or highly ori-
ented MgO(001) barriers combined with 3d transition metal electrodes (see also the lecture by
D. Wortmann). Although an MgO tunnel barrier is nonmagnetic and therefore cannot directly
select tunneling electrons according to their spin orientation, it filters electronic wave functions
according to their symmetry. This transport process is termed coherent tunneling, and requires a
matching of Bloch state symmetries at the electrode—barrier interface. At the Fe/MgO interface,
for example, only totally symmetric wave functions with normal incidence can be connected to
the electronic structure of the MgO tunnel barrier. It turns out, that the Fe A; wavefunctions
have the required symmetry. Whereas the A; majority (spin-up) band has states at the Fermi
level, no spin-down states with A; symmetry are present. Therefore, only A; spin-up electrons
pass the MgO barrier efficiently and the tunneling current is highly polarized. It becomes clear,
that even tunnel junctions based on 3d transition metals can generate nearly completely spin-
polarized currents because of the symmetry filtering process. Although the tunnel process is
spin-dependent, the sorting mechanism actually is a symmetry selection and therefore shall be
termed “symmetry filtering”.

In addition to momentum and symmetry filter effects, a magnetic tunnel barrier itself can act
as the spin-selective element of a tunnel junction, as discussed in Section 2.1. Therefore, a
spin-polarized current can be created with nonmagnetic electrodes. This approach is in contrast
to those mentioned above, which rely on ferromagnetic metals as (part of) the source of spin-
polarized charge carriers.

Until now, various materials have been successfully used as spin filter tunnel barriers. Among
those are binary rare earth chalcogenides, transition metal oxides and manganese-based per-
ovskites. In the following, we will review electronic properties of selected spin filter materials
that are relevant for the understanding of spin filter tunneling.
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2.3 Properties of spin filter materials

Materials that filter spins by tunneling have to fulfill two criteria: On the one hand, they have
to possess a spontaneous magnetic moment below a critical temperature and, on the other hand,
they must have a bandgap around the Fermi level. In terms of electronic structure, such materials
are either wide-gap semiconductors or insulators. Only a few compounds, however, simultane-
ously show magnetic and insulating properties. Until today, three material classes have been
experimentally confirmed as spin filter tunnel barriers. A list of these known spin filters with
some of their structural, magnetic and electronic properties is given in Table 1.

Europium chalcogenides The material class of Europium chalcogenides (EuO, EuS, EuSe
and EuTe) was identified already in the early 1960s as magnetic insulators. For more than
twenty years, these compounds have been subject of tremendous interest, but it has not been
until recently, that the Eu chalcogenides are revisited for spintronics studies. Whereas EuO and
EusS are ferromagnetic oxides, EuSe and EuTe show antiferromagnetic ordering. EuO and EuS
have Curie temperatures of 7o = 69.9K and 16.6 K, respectively, and thus filter spins only at
liquid helium temperatures (7T g, = 4.2 K).

Pure Europium (Eu) is a rare earth metal with the outermost electronic configuration 4 f7 5d°
6s2. Due to the strong electron affinity of the chalcogens, the two 6s electrons of the Eu atoms
are transferred to saturate the p orbitals of X in the EuX compound. The Eu-X bonding is
therefore mainly ionic in nature, which explains why these materials crystallize in a compact
rocksalt structure. If the europium compound is fully stoichiometric, the material is insulating
with a valence band built of the p states of the anion (X) and the conduction band built up with
6s and 5d states of the Eu cation. The Eu 4 f states are located within this energy gap, and the
energy difference between the 4 f states and the 5d conduction band is referred as the optical
bandgap £,.

The magnetic moment of the EuX compounds originates from the seven unpaired spins in the 4 f
levels of the Eu?* ion. One can derive from Hund’s rule, that the ground state spin configuration
of the Eu 47 electrons is maximal S = 7/2, whereas the orbital momentum vanishes L = 0.
The Eu chalcogenides are considered as typical substances where the Heisenberg model applies.
The reason is that the Eu 4f wave functions are very localized, i.e. their overlap with other
orbitals is small and the atomic character is mainly conserved in a crystal. Magnetic exchange
is then described by the Hamiltonian

H=-Y " J;SS;, (5)
i3

where J;; is the exchange constant (positive for ferromagnets and negative for antiferromag-
nets) and S; ; are the neighboring spins. In order to quantify the magnetic ordering in EuX
compounds, one has to take into account the exchange integrals .J; and .J, between Eu?* nearest
neighbors and next-nearest neighbors, respectively. It turns out, that magnetic exchange orig-
inates from virtual transitions between the occupied 4 f states and 5d conduction band states.
Whereas the exchange J; between europium nearest neighbors is an indirect mechanism gen-
erated by intra-atomic d — f exchange (J; ~ Jg), the exchange integral J, is the result of
several contributions of so-called superexchange. In EuO and EuS, the ferromagnetic indirect
exchange J; is dominant and responsible for the ferromagnetic ordering at 7 = 69.9K and
Te = 16.6 K, respectively.

Up to this point, we considered perfectly stoichiometric europium chalcogenides, which are
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Material magnetic 7c moment structure E, AE, P References
behavior (K) ()  a(nm) eVv) V) (%)

EuO FM 69.9 7.0 fcc 1.12 054 29 [2]
0.514

EuS FM 16.6 7.0 fcc 165 0.36 86 [4]
0.596

EuSe AFM 4.6 7.0 fcc 1.80 100 [2]
0.619

NiFe,O, FerriM 850 2.0 spinel 1.20 22 [7]

CoFe,0, FerriM 793 3.0 spinel 057 1.28 [9]

CoCrO; FerriM 95 spinel [10]

BiMnO; FM 105 3.6 perovskite 22 [8]

Table 1: Overview on known spin filter materials and selected magnetic, electronic and struc-
tural properties.

insulating in nature. A small departure from stoichiometry, e.g. due to electron doping, gen-
erates free carriers in the EuX matrix which are responsible for a modification of the magnetic
exchange interaction. In that case, the indirect exchange between the localized 4 f spins S of
the Eu?* ions and the spins o of the 5d conduction electrons is mediated by a free electron gas.
The effect of the d — f exchange constant J4 is to split the conduction band in spin-up (T) and
spin-down (|) subbands by an amount

AE,. = JySo, (6)

with S being the spin carried by the Eu?* ions and o being the localized spin polarization. The
exchange splitting AF,. of the conduction bands results in a large variation of the bandgap
E, as a function of temperature, as shown in Figure 2(a). This thermal shift of £, affects the
optical, magnetic and electronic transport properties of EuX. An optical absorption experiment,
which directly probes the electronic structure of a material, can visualize this effect (Figure
2(b)): A large shift AE of the optical absorption edge towards lower energies can be observed
when the temperature is lowered and EuX becomes ferromagnetic. This shift is a result of the
increasing J4 exchange interaction between the localized Eu 4 f spins and the 5d conduction
electrons, which pushes the spin-down conduction band to higher energies and the spin-up band
to lower energies, thus reducing the effective bandgap £,. Apart from optical measurements,
various other experiments have confirmed the thermal shift of £, for example photoemission,
field emission and tunneling experiments [1].

Whereas many studies have been presented for bulk europium chalcogenides, much less is
known about the electronic and magnetic properties of thin films. In the thickness regime of
spin filter tunnel barriers of few nanometers, it is important to achieve sizable magnetic ordering
and exchange splitting. Ab initio calculations of single crystalline EuX(100) predict the Curie
temperature to be strongly thickness dependent, i.e. to be significantly reduced for films of just
few monolayers [3]. Qualitatively, this behavior can be explained by the lower coordination
number of the surface atoms (four for an fcc structure) and thus a reduced exchange interaction
compared to that of the atoms in the center of the film (twelve for bulk). One may anticipate
that if 7 is reduced for thin EuX films, also a reduced exchange splitting AE,.. can be at play,
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which recently has been confirmed by tunnel experiments. However, A E,.. is still large enough
such that EuX spin filter barriers typically produce a relatively high spin polarization, as listed
in Table 1. Since growing ultrathin films of Eu chalcogenides is relatively easy, this material
class is commonly utilized for fundamental studies on spin filter tunneling [2, 4].

Spinel Ferrites Candidates for spin filter barriers are the transition metal oxides NiFe;Oy,
CoFe,0, and MnFe;O,4. These compounds with the general formula AB,O, belong to the ma-
terial class of spinel ferrites. Whereas the AB,O, systems are magnetic and insulating, their
parent compound Fe;O, (magnetite) shows half-metallic character. Ferrites have magnetic or-
dering temperatures of about 800 K and thus could potentially filter spins at room temperature.
The spinel ferrites AB,O, crystallize in a cubic structure built of two face-centered cubic (fcc)
sublattices. The first sublattice is formed by ferromagnetically ordered Fe3* ions that occupy
the tetragonal A sites of the spinel AB,O, structure. The second sublattice contains ferromag-
netically ordered TM?* and Fe3* ions which occupy the octahedral B sites. Recent experiments
give evidence that thin spinel ferrite films have magnetic properties that substantially differ from
those of the corresponding bulk material. For example, NiFe,O, films with a few nanometers
thickness have a saturation magnetization of about twice that of the bulk compound, depending
on the growth conditions [7].

Thin spinel ferrite films are usually deposited by oxygen-assisted molecular beam epitaxy, a de-
position method which allows a controlled growth down to atomic layer accuracy. In practice,
however, chemical off-stoichiometry and atomic site disorder are often present in samples. As
the magnetic properties are sensitively controlled by the occupancy of the transition metal ion
on the lattice sites, the experimental situation with respect to the observed magnetic behavior —
especially in thin films — is not yet fully understood. Also the band structure of solids is crucially
dependent upon the atomic structure and site occupancy. It is therefore not surprising, that the
computer simulation of the exact physical conditions in such complex systems as the AB,0,
ferrites is very difficult. Electronic structure calculations from first principles have estimated
a smaller gap between spin-down than for spin-up band, which in tunnel experiments should
result in a negative spin polarization of the tunnel current, due to the excess of spin-down elec-
trons. In particular, for CoFe,O, a very large exchange splitting of 1.28 eV of the conduction
band was calculated. On the experimental side, however, recent studies using CoFe;O, spin
filter barriers show just very modest spin filtering at room temperature [9].

Perovskites Compared to the complex crystal structure of the ferrites, the cubic perovskite
structure is relatively simple. It is therefore convenient to experimentally integrate thin per-
ovskite layers as spin filter barriers into tunnel junctions. The perovskite structure follows the
formula ABO3, where the A atoms form the corners of the cubic cells, B atoms are located in
the center and the oxygen atoms are situated in the faces’ centers. In particular, it is possible
to combine perovskite spin filter barriers with isostructural half-metallic ferromagnetic metals,
such as Lay/3Sr;,3MnO3 (LSMO), which can be used as a spin analyzer to probe the spin filter
efficiency (see Chapter 3).

Among the perovskites, BiMnOj is an established insulating and ferromagnetic oxide with a
Curie temperature of 105 K. The insulating state of BiMnOs is very robust with respect to
the deposition conditions. Up to now, however, no quantitative experimental determination of
the exchange splitting of the conduction band has been reported. Ab initio calculations us-
ing density functional theory are somewhat contradicting in their predictions of the electronic
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Fig. 2: (a) Temperature dependent band structure of EuX compounds. Under the effect of mag-
netic exchange (J4), the conduction band splits into a spin-up and spin-down sublevel below
Tc. (b) Shift of the optical absorption edge of EuX compounds indicating the spin splitting of
the conduction band under the effect of df exchange interaction. According to Ref. [1].

properties, due to the difficulties modeling the highly correlated character of these materials.
An exchange splitting of 0.5 eV was estimated from linear spin-density approximation (LSDA)
calculations and 1.6 eV from the LSDA+U method, whereas the latter technique is commonly
accepted to be more reliable to calculate band gaps [8]. In both cases, it is predicted that the
bandgap is smaller for spin-up electrons. Therefore, when used as a spin filter, a BIMnO; layer
should filter out spin-down electrons and produce a positively spin-polarized current.

2.4 Quantifying the spin filter effect

Evidence for the spin filter phenomenon can be obtained from the temperature dependence of
the electrical resistance R(7") of a magnetic tunnel barrier. Whereas in a nonmagnetic insulator
the resistance increases continuously with decreasing temperature as thermal excitations are
suppressed, a significant decrease in R occurs below the Curie temperature T, of a magnetic
insulator, if spin filtering is present. As discussed in Section 2.3, the conduction band splits
below T and one spin type will tunnel preferentially. Because of the exponential dependence of
the tunnel current on barrier height (recall Equation (2)), this results in a significant increase of
conductivity (=decrease in resistance R) for the corresponding spin orientation with decreasing
temperature. More quantitatively, the tunnel resistance R can be expressed within a simple
free-electron tunnel model as

Ry(y(T) ~ exp <—d 1 (T)) with  @1()(T) = By % JySo(T), )

where d is the barrier thickness, T is the temperature, ®, is the average barrier height above
Te, Jgr 1s the exchange constant, S is the spin quantum number and o(7") is the reduced mag-
netization M (7)/M(T = 0) of the magnetic insulator. The temperature dependence of the
resistance thus scales exponentially with the magnetization of the spin filter. Therefore, AF,.
can directly be deduced from the tunnel measurement if the barrier heights ® above and below
T are known.
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Fig. 3: Schematic of the band diagram for a quasimagnetic tunnel junction (QMTJ). With a
ferromagnetic (FM) counterelectrode, the tunnel current depends on the relative magnetization
orientation between spin filter and FM. (a) For parallel alignment, a large current is measured,
while for (b) antiparallel alignment, a small current results.
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The spin polarization of a tunnel current can be probed either by a superconductor (SC) or a
ferromagnet (FM) as the spin detector. Superconducting tunneling spectroscopy is a standard
method to determine the effective tunneling spin polarization that arises from the ferromagnetic
part in FM/insulator/SC or metal/spin filter/SC junctions [2]. Typically, a superconducting alu-
minum (Al) electrode serves as the spin detector. If a ferromagnet is used as the spin detector, a
magnetoresistance (MR) measurement can be applied to quantify the spin filtering efficiency of
a magnetic tunnel barrier. The magnetic barrier functions as the spin polarizer that generates a
highly polarized current, whereas a ferromagnetic counterelectrode serves as the spin analyzer.
The latter collects differently the spins parallel and antiparallel to its magnetization relative to
the spin filter barrier, which leads to large differences of the conductance. Therefore, the resis-
tance of the device depends on the relative orientation of the magnetic moments of the magnetic
insulating barrier and the ferromagnetic counterelectrode. Chapter 3 reviews the phenomenon
of spin filter magnetoresistance and its applications in spintronic devices in more detail.

3 Spintronic devices with spin filters

3.1 Quasimagnetic tunnel junctions

The most straightforward approach to convert the spin filter effect into magnetoresistance is
to integrate a magnetic insulator into a quasimagnetic tunnel junction (QMTJ). In such “spin-
filter” MTJs, the spin filter tunnel barrier is sandwiched between a nonmagnetic and a ferromag-
netic electrode. This combination slightly differs from conventional magnetic tunnel junctions
(MTJs), in which two ferromagnetic electrodes sandwich a nonmagnetic insulator (see lecture
by P. Griinberg). In both devices, however, the resistance of the junction depends on the rel-
ative alignment of the magnetization of the two magnetic layers. For a QMT]J, in the case of
a parallel alignment of the spin filter barrier and the ferromagnetic electrode, a low junction
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Fig. 4: (a) Magnetoresistance (MR) as a function of magnetic field B for an Al/EuS/Gd quasi-
magnetic tunnel junction (QMTJ), taken at " = 2K (well below the EuS T,) as well as at
7K and 30K (well above the EuS T¢). (b) MR of an Al/EuS/Al;,03/Co/CoO QMTJ recorded
at T = 4.2K. An improved MR is observed if the EuS spin filter barrier and ferromagnetic
electrode are magnetically decoupled by a very thin insulator.

resistance Iz, is measured. An antiparallel alignment results in a high junction resistance R,,.
This observation is termed “spin filter tunneling” magnetoresistance. Its characteristic quantity
is the magnetoresistance (MR) ratio, which is defined — in the same manner as in conventional
MTJs — as the variation of electrical resistance between the parallel (R,) and the antiparallel
(R,p) state of magnetization of the two magnetic layers, i.e.

AR R, R,

MR
R R,

(8)

The magnitude of MR depends on the exponential dependence of the tunnel current on the bar-
rier height, as one spin channel has a larger tunneling probability (see Section 2.1). Moreover,
with a magnetic counterelectrode, we must consider the role of the spin-polarized density of
states in the electrode as well. The tunnel current depends on the number of filled states in
the first electrode as well as the number of available states in the second. Using one magnetic
electrode, see Figure 3, the density of available states in the magnetic electrode is spin depen-
dent, and the tunnel current will depend on the relative orientation of the filtered spins (i.e., the
spin filter magnetization direction) and the electrode magnetization. As illustrated in Figure
3(a), for parallel alignment only spin up electrons tunnel through the spin filter barrier and thus
they can only tunnel into majority (spin up) states in the magnetic electrode, resulting in a large
current. For the antiparallel case (Figure 3(b)), the current is minimal since only the spin down
states are available in the ferromagnet. Generally, this device can be considered analogous to a
polarizer/analyzer optical configuration, although with non-perfect analyzer.

The magnitude of the expected “spin filter tunneling” magnetoresistance effect may be esti-
mated within a simple two-current model, assuming spin conservation in the tunneling process
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(see Sect.2.1), as
AR 2PpvPsr ©)
R 11— PeyPsp’
where Pr), is the tunneling spin polarization of the ferromagnetic electrode and Psr is the
efficiency (polarization) of the spin filter. Eqn. (9) is basically an extension of the Julliere’s for-
mula (see lecture by D. Wortmann), from which the spin filter efficiency Psg can be estimated
if the spin polarization Py Of the FM layer is known.
In order to observe MR, it is necessary to avoid magnetic exchange coupling between the spin
filter barrier and the adjacent ferromagnetic electrode. Only if both layers show an independent
magnetic switching behavior under an applied magnetic field, a well-defined TMR curve can be
measured. This can be realized if the coercive fields of the spin filter barrier and FM electrode
are different, so that they can reach both parallel and antiparallel alignment.
The first spin-filter experiment utilizing a QMTJ device structure was performed by LeClair et
al. in 2002. A magnetoresistance ratio of up to 130% at 7" = 2 K was obtained for a QMTJ
with a 5nm thick Europium Sulfide (EuS) barrier sandwiched between Aluminum (Al) and
Gadolinium (Gd) electrodes as shown in Figure 4(a). Using the aforementioned simple model,
the spin filter efficiency of the EuS barrier can be estimated being close to 90%. One can see
from Figure 4(a) that there is considerable noise in the MR signal. This behavior is attributed
to magnetic coupling between the adjacent EuS and Gd layers, which leads to instabilities in
the magnetization reversal in the EuS layer upon sweeping the external magnetic field. The
magnitude of TMR decreases as the temperature is raised closer to the Curie temperature 7t of
EuS, and no magnetoresistance is observed above T¢.
An improved performance of a spin filter tunnel junction was realized by Nagahama et al., who
investigated QMTJs of the structure AI/EuS/AlO,/Co/Co0. The AIO, layer between the EuS
barrier and the Co electrode magnetically separates the layers, whereas the antiferromagnetic
CoO acts as an exchange bias layer pinning the magnetization of the Co layer. Figure 4(b)
shows the MR curve of the junction at a temperature of 7" = 4.2 K taken with a bias voltage of
Viias = 5 mV. Compared to the work on EuS junctions in Figure 4(a), the shape of the magne-
toresistance curve is stable with no instability in junction resistance.
The potential of the BiMnO3 perovskite as a spin filter tunnel barrier was investigated by Gajek
et al.. In their experiments, Au-BaMnO3-LSMO junctions showed a reasonable spin filter ef-
ficiency of about 22% at 7" = 3 K. A first step towards room temperature spin filtering was
reported recently in a study by Ramos et al. with fully epitaxial spinel CoFe,O3-based tunnel
junctions. The measurements reveal magnetoresistance values of —18% at 2 K and —3% at 290
K, indicating that magnetic tunnel barriers of spinel ferrites in principle could be used as spin
filters over a broad temperature range.

MR =

Bias dependence in QMTJs For conventional MTJs with two ferromagnetic electrodes sep-
arated by a nonmagnetic insulator, such as Al,O3 or MgO, the tunnel magnetoresistance con-
sistently decreases with increasing applied voltage. Reasons for this hallmark behavior are
mechanisms like spin scattering in the barrier or excitation of spinwaves (magnons), which lead
to the loss of spin information. Therefore, the operation of a conventional MTJ device is limited
to low bias voltage for an optimum TMR effect. The bias dependence of a QMT]J, can show an
opposite behavior. With a spin filter barrier involved, the magnetoresistance can increase with
applied bias voltage.

It is the characteristic tunnel mechanism across the spin filter barrier that explains this unusual
bias dependence. For a qualitative understanding, one divides the energy diagram of a QMTJ
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Fig. 5: Magnetoresistance and its bias voltage dependence in QMTJs. (a) The bias dependence
shows an continuous increase of the MR ratio up to high bias voltages, which is contrary to
conventional magnetic tunnel junctions. It can be understood as due to different tunneling
mechanisms through the spin-split conduction band of the spin filter barrier. (b) Schematic of
the band diagram for a AI/EuS/AlO,/Co QMTJ with Vj,;.s < 4. Electrons must tunnel directly
through both EuS and AlO,, barriers. (c) Schematic band diagram for Vj;,s > ®;. Spin-up
electrons tunnel via Fowler-Nordheim tunneling through the spin-up conduction band, whereas
spin-down electrons must still tunnel directly through the barrier. Adapted from Ref. [6].

into three regions (Figure 5(b)): (i) A bias voltage may be applied which is either lower than the
bottom of the spin-split conduction band, V4,,s < @1, or (ii) may lie in between the spin-split
conduction band, ®; < Vs < @, or (iii) exceeds the upper conduction band edge V.5 > @,.
Dependent on the bias voltage, different tunnel mechanisms are in effect. At low bias, V., <
®4, electrons must tunnel through a trapezoidal barrier, termed as direct tunneling (DT). A dif-
ferent situation occurs at intermediate bias, ®; < Vs < ®|, where the spin-up conduction
band is below the Fermi level of the metal electrode. A narrower (spin-up) barrier is in effect,
that allows spin-up electrons to tunnel via the conduction band. This mechanism is termed
Fowler-Nordheim (FN) tunneling and is typically characterized by a triangular shape of the
barrier and tunneling through only a part of the insulating layer. At high bias, Vji.s > @,
Fowler-Nordheim tunneling occurs for both spin-up and spin-down channels, as the metallic
Fermi level exceeds both barriers ®; and .

Fowler-Nordheim tunneling has a greater tunneling probability than direct tunneling [6]. There-
fore, the spin polarization of the tunneling current increases for V;,,, > ®; and causes a signif-
icant increase in magnetoresistance from where the transition from direct tunneling to Fowler-
Nordheim tunneling takes place (Figure 5(a)). At even higher bias, the spin down conduction
band also lowers below E of the metal electrode and results in a gradual reduction of MR.
This special feature of a spin filter tunnel junctions allows to reach enhanced spin polarization
and magnetoresistance at high bias voltages, which is not observable in conventional MTJs.

3.2 Double spin filter tunnel junctions

Whereas in quasimagnetic tunnel junctions a conventional ferromagnetic counter-electrode still
is used to serve as the spin detector, one can imagine to realize magnetoresistance with spin
filters without any ferromagnetic electrode involved. A device in which this idea is realized is a
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double spin filter (SF) tunnel junction, which operates by solely tuning the tunneling probabili-
ties TT<E> 7é T1<E>

A double spin filter device consists of a tunnel junction formed by at least four layers: The
outer two layers are nonmagnetic metal electrodes and function simply to provide an electrical
contact to the inner layers. The inner two layers are the core part of the device and form the
spin filter tunnel barrier. The key issue is that the two spin filter layers have to have unequal
coercivity: One coercivity has to be chosen to be very large, so that the magnetic moment of
this pinned layer stays fixed. The other layer has a smaller coercivity. This “free” layer may be
switched back and forth by an external magnetic field. The junction resistance is smaller when
the magnetization are parallel and larger, if they are antiparallel. This is due to the different
barrier height profiles for spin up and spin down electrons as schematically sketched in Figure
6(a). When the free layer is parallel to the pinned layer, spin up electrons see a low barrier and
spin down electrons a high barrier. Then, a relatively large spin up current flows, but only a very
little spin down current. When the free and the pinned layers are magnetized antiparallel, both
spin up and spin down electrons see a barrier profile consisting of one low barrier height section
and one high barrier height section. This barrier configuration allows little spin up or spin down
current flow. The magnetoresistance of a double spin filter junction depends exponentially on
the relative alignment of the spin selective barrier heights of the two spin filter layers (recall
Eqgn.(1)). This makes the device theoretically very sensitive. A rough estimation of the MR
ratio that theoretically can be expected for two spin filter barriers of few nanometer thickness
is in the order of AR/R ~ 10° [11, 12]. Double spin filter barriers therefore could potentially
exceed the sensitivity of conventional MTJs by at least two orders of magnitude.

The first experiment on spin filter double junctions has not been realized until very recently [13].
By combining double EusS spin filter barriers with Al electrodes, up to 60% MR was observed
at a temperature of 1 K. This modest MR was attributed to imperfections of the polycrystalline
structure of the layer stack and interfaces. One therefore can expect enhanced MR ratios from
double SF barriers with improved crystallinity. In this work, the key issue of separating the
coercive fields of both EuS layers was achieved by combining one EuS layer deposited at room
temperature and the other quench-condensed at liquid nitrogen temperature (7, = 77K) as
shown in Figure 6(b). A thin Al;O3 spacer layer introduced in between the barriers was neces-
sary to magnetically decouple both spin filter layers.

Although a double spin filter junction may lead to very sensitive MR devices, finding materials
that give large signal above room temperature will be challenging. The requirements are finding
a magnetic insulator with small band gaps and large exchange splitting, which can be grown as
high-quality thin films. The perovskite family has the advantage that the magnetic layers can be
grown relatively easily, but the disadvantage is that they are operating at most at liquid nitrogen
temperatures. The second possible material system are ferrites, which can be grown epitaxially
and are potentially both insulating and ferrimagnetic above room temperature.

3.3 Spin filtering in quantum wells

This section is intended to give an example of spin filter tunneling which goes beyond the stan-
dard concept of magnetic tunnel junctions. Using quantum well (QW) structures is an approach
to realize spin filtering relying on the idea to select the spin character of electrons by resonant
tunneling. This option becomes possible if the quantum well is made of magnetic material, and
the energy levels are spin-split. The splitting of quantum well states enables one to select the
resonant tunnel condition for each spin by applying the right bias voltage.
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Fig. 6: (a) Schematic illustration of the spin filter mechanism in double spin filter tunnel junc-
tions below the Curie temperature Tt of the spin filter barrier. Dotted lines roughly indicate the
barriers that the spin-up and spin-down electrons have to cross. (b) Magnetic hysteresis loops
of thin EusS films deposited at 77 K and RT, film thicknesses are 1.5 nm and 3 nm, respectively.
The coercivity strongly differs for the two deposition temperatures. After Ref. [13].

A device in which spin-filter resonant tunneling can be observed is a so-called magnetic reso-
nant tunneling diode. This structure is typically built of a fully semiconducting layer stack, in
which two outermost layers are highly conductive and serve as the emitter and collector elec-
trode. Those leads sandwich the heart of the device, that is a quantum well which is surrounded
by two diamagnetic semiconducting layers serving as tunnel barriers. The well is typically
made of a diluted magnetic semiconductor (DMS), in which magnetic ions are doped into con-
ventional semiconductors to achieve ferromagnetism. If a constant external magnetic field is
applied, the energy levels of the paramagnetic DMS exhibit a giant Zeeman splitting. At low
temperatures, the energy levels in the well are split into spin-up and spin-down states. The
amount of Zeeman splitting is controlled by the strength of the external magnetic field and can
be in the order of several ten meV. Standard DMS materials typically require fields in the order
of Teslas to reach the magnetic saturation, which is about one order of magnitude higher com-
pared to “concentrated” magnetic semiconductors like the Eu chalcogenides.

Such a type of spin filtering device was realized in 2003 by Slobodskyy et al. [14]. They fabri-
cated an all 11-VI semiconductor resonant tunneling diode based on (Zn,Mn,Be)Se (see Figure
7(a)). The ZnBeSe layers serve as tunnel barriers and the quantum well states are formed in a
ZnMnSe DMS layer. Figure 7(b) shows the current-voltage (/-V') characteristics of this reso-
nant tunneling diode. Without an external magnetic field, a single resonant peak is present at
about 125 meV. This resonance is split into two parts if a magnetic field is applied. The splitting
thereby grows as a function of the magnetic field because it corresponds to the Zeeman splitting
of the DMS quantum well. Each of the two peaks can be attributed to spin-up and spin-down
quantum well states. One can therefore select the desired spin orientation of the current by ap-
plying a proper bias voltage to the device. The spin polarization of the current flowing through
the device is thereby dependent on the external magnetic field B and the applied bias voltage
Viias- This experiment demonstrates the possibility of tunneling through spin resolved energy
levels in semiconductors, with the special feature that the spin filter process can be voltage con-
trolled. This idea may have potential utility for spintronic devices based on semiconductors, as
will be introduced in the last section.
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Fig. 7: (a) Schematic view of a magnetic resonant tunneling diode (RTD) band structure under
applied bias voltage after Ref. [14]. (b) Current-voltage characteristics for the RTD with
ZnMnSe (Mn=8%) in the quantum well. The curves are taken from zero applied magnetic field
up to B=6T.

3.4 Spin injection through spin filters

Generating highly spin polarized tunnel currents is a very useful tool for realizing magnetore-
sistive effects, but also for making use of spin-polarized currents in semiconductors (SCs).
Research is driven by the aim to incorporate spins into existing semiconductor technology and
currently is one of the most active areas in the field of spinelectronics. The spin orientation can
survive over long distances in semiconductors — for example over 100 microns in GaAs. This
capability is attractive for realizing spintronic devices as, for example, spin field effect tran-
sistors or spin-light emitting diodes (spin-LEDs). In order to operate any SC-based spintronic
device, the following steps have to be realized: i) generation and efficient injection of spin po-
larized electrons into a semiconductor, ii) coherent transport of spin through the semiconductor,
and finally iii) detection of the spin. It has turned out, that the initial step — the so-called spin in-
jection — already represents a major challenge. The earliest approach to electrically inject spins
was to use a ferromagnet (FM) as the source of spin polarized carriers, but many experimental
trials have been unsuccessful. A theoretical model was put forward that explains the problem
encountered at the FM/SC interface: The very large spin-dependent conductivity in the FM is in
contrast to a very small spin-independent conductivity in the semiconductor, such that the spin-
injection coefficient is negligibly small [15]. In order to overcome this obstacle, it was proposed
that the only possibility to effectively transmit spins across the FM/SC interface would be that
either the current is initially almost 100% spin-polarized or that a tunneling barrier is inserted
in between. The tunnel barrier would have the same low conductivity as the semiconductor, but
in addition is spin selective.

One route to meet the above conditions is to make use of the spin filter effect of a magnetic
tunnel barrier. An advantage is the potentially high spin filter efficiency which could produce
the near 100% spin polarization that is required for an efficient spin injection. In addition, it
could alleviate the problem of the strong interface sensitivity of standard tunnel barriers: As the
spin filtering efficiency at first order depends on the barrier heights and not on interface density
of states (recall Section 2.2), it should be more robust with respect to variations in interfacial
properties. An interesting property of the Eu chalcogenides is their tunable conductivity (o free
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carrier concentration) which can be adjusted over a wide range by electron doping. In this way,
the Europium compounds can be used as spin filters in the insulating state and as spin injectors
when doped.

Experimental work integrating spin filters with semiconductors for injection and detection of
spin polarized currents still has some way to go before catching up with theoretical models.
Many problems simply arise from the growth of the according materials on semiconductors,
which can lead to the formation of undesired compounds and alloys at the interface or inter-
facial electronic states, just to name a few. An initial step was done by studying the current
transport across EuS/GaAs spin-filter/semiconductor contacts and to estimate its polarization
detection efficiency [16]. The thin Schottky barrier produced by a 100nm thick doped EuS
layer in contact with GaAs performs both the function of a highly polarized source as well as
an insulating spin filter barrier. The exchange splitting of the EuS conduction band was deter-
mined by measuring the current-voltage (/-V") characteristics at temperatures above and below
the T of EuS. The exchange splitting AE,. was quantified from the the relative shift of the
I-V curves towards smaller voltages for T' < T, which is the signature of a lowered barrier
height for electrons tunneling from EuS into the GaAs electrode. In addition, a shift of the
current-voltage characteristics with temperature in the reversed bias regime (electron injection
from GaAs into EuS) was observed suggesting spin filtering of the unpolarized electrons com-
ing from GaAs. In this way, the performance of the EuS/GaAs contact as an spin injector and
spin detector was probed individually. The observed effect in the current-voltage characteristics
implies spin injection and detection though no spin analyzer is explicitly used.

4 Concluding remarks

Spin filter tunneling is an interesting phenomenon which has been revisited since recently for
spin electronics. The potential of spin filter tunnel barriers to generate currents with very high
spin polarization is essential to realize large spin-dependent effects for example in magnetic
tunnel junctions, spin filter tunnel diodes or semiconductor-based devices. Unique features can
be observed in devices based on spin filters, for example, enhanced magnetoresistance ratios at
high bias voltages or the possibility to operate spin filtering voltage-controlled. However, until
today establishing spin filtering at room temperature is still a major challenge. In either case,
future studies relying on the spin filter effect will hold interesting physics ready.
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1 Introduction

This lecture deals with effects generated by the spin-orbit interaction in semiconductors. The
influence of spin-orbit coupling on the band structure of semiconductors was recognized already
in the 1950’s and intensively studied, e.g. by Dresselhaus [1]. Most prominent is the splitting
of the sixfold degeneracy of the p-valence states in the vicinity of the I'-point. Like in atoms
the p-states form two- and fourfold degenerate states energetically separated proportional to
the spin-orbit interaction strength. With the development of epitaxial growth techniques and
structuring of devices by etching and gates on nanometer-scale studies of spin-orbit effects
on the transport of the electrons were taken up again, with the goal of using also the spin for
signal transmission. Because of spin-orbit coupling the spin of an electron moving in an electric
field sees a magnetic field and may carry out a precession motion. This is detectable via spin
sensitive detectors (optical, injection into ferromagnetic material). This lecture will collect the
basic theoretical ingredients to describe such effects (an extensive survey over experiments and
theory is given in [2]).

In section 1 the main features introduced by spin-orbit coupling into the band structure of a
semiconductor will be repeated (cf. lectures of G.Bihlmayer and Ph. Mavropoulos) and their
theoretical derivation is outlined. Section 2 is dedicated to the physical consequences of the
band structure when electrons in a semiconductor are influenced by external electric and mag-
netic fields. Their motion can be described by an effective mass Schrddinger equation. The
parameters, m* (effective mass), g* (effective gyromagnetic factor of the electron spin) and ef-
fective spin-orbit coupling parameters are determined by appropriate matrix elements between
band edge Bloch functions. Section 3 is occupied with the special situation of electrons moving
in reduced dimension. Many hetero-structures consisting of layers of chemically different ma-
terials may trap electrons between the layers and support a 2-dimensional electron gas (2DEG)
with the electrons moving freely parallel to the layers. To transport signals the geometry is fur-
ther restricted to quasi 1-dimensional contacts. If the material is clean enough to make the mean
free path of electrons of the order of the length of the contact they are called quantum-wires.
The Schrodinger equation including spin-orbit interaction for the electron distribution in a wire
is derived. In section 4 a specific example is studied. The focus is on the the dynamics of the
electron spin during the passage through the wire. The phenomena of spin precession and spin
polarisation are studied.

2 Bloch wave functions including spin-orbit interaction

The motion of the electrons in a crystal is governed by a periodic potential: Vi.(7) = Ve (7+ R)
(V R, lattice vector). As a consequence the states of an electron are Bloch-states organized in
bands (cf. lecture of G. Bihlmayer). This remains true, when spin-orbit coupling

Hop = — " 7 [vv X <ﬁ+ e/fﬂ , )

(2mec

is included. m, is the mass of a free electron and e its charge. As required by relativity, an
electric field E = —VV/e is seen by the spin S = //25 (¢ Pauli matrices, cf. lecture of G.
Bihlmayer) of an electron at position " moving with velocity 7 = (p’+ eA)/m, in its rest frame
as a magnetic field, Hso is the Hamiltonian connected to it. A is the vector potential of an

external magnetic field B=V x Aand p the canonical momentum of the electron.
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Without magnetic field the Schrodinger equation including spin-orbit interaction is given by

G VVe X | = e . 2

In a semiconductor the Fermi-energy falls into an energy gap and the relevant states for the
electrons are in the vicinity of the I'-point (or possibly another symmetry-point) of the Brillouin-
zone. It is useful to start with the solutions at the I'-point, the lattice periodic *“band-edge
functions”

Uy (7,8) 5 €0 @ v=20,1,2,---, s ==%1, 3

with
(V| = Z/ d? T U, Ug = (5 4)

U is the Wigner—Seitz-unit-cell and V;; its volume.

Eq. (2) is very similar to the Schrodinger equation of a single atom, only the symmetry is
reduced. In an atom the symmetry is fully spherlcal With spin-orbit interaction the total angular
momentum .J, sum of orbital momentum L = 7 x D p and spin S, is a conserved quantity and
classifies the states. The quantum numbers j of J are half integral, the degeneracy of the
states, 25 + 1, is even. s-(I = 0)-states are twofold degenerate. For p-(I = 1)-states L and
S are coupled to twofold degenerate ; = 1/2-states and fourfold degenerate j = 3/2-states

2mec
number of symmetry operations defining the point group of the crystal. Most common for
semiconducting crystals is tetrahedral symmetry (point group Oy). In “111-V’-compounds like
GaAs the atoms of the components occupy face-centered-cubic lattice positions shifted against
each other in space diagonal direction by a quarter of the lattice constant. Each atom sits in
the center of a tetrahedron formed by four atoms of the other component (Fig. 1). The band-

2
separated by the spin-orbit energy A,, = ( h ) (V'/r). For Eq. (2) there are only a finite

Fig. 1: atomic positions in I11-V-compounds
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edge functions of valence (v)- and conduction (c)-bands develop out of s- and p-states of the
atoms (4s,4p for GaAs). Their shape is unchanged close to the nuclei because of the dominant
spherically symmetric Coulomb potential. If the spin-orbit interaction is neglected, the threefold
degeneracy of the p-states is not removed in tetrahedral symmetry. There are two atoms per unit
cell. This leads to formation of functions with and without node between the neighbors (called
anti bonding, bonding functions). In leading order the spin-orbit interaction does not change
the energies of s-like states because diagonal matrix-elements (v|Hgso|v) vanish (cf. Eq. (18)).
For p-like states ug, : v = 1,2, 3 the matrix-elements (v|Hso|v') are equal for all pairs v, v/
by symmetry (cf. Eq. (19)). The resulting eigenvalue equation has two solutions, one fourfold
and one twofold degenerate (cf.Eq. (20)). The eight electrons per unit cell fill the bonding s,p
- band states. The Fermi-energy is in the gap between the bonding p- and anti bonding s-band.
The resulting level scheme is illustrated in Fig. 2.

Ga GaAs As

Fig. 2: level scheme for a typical 111-V-compound

At k; # 0 the periodic part u;, of Bloch-functions ¢, = uz:, exp (k) obeys the equation

[ L (ﬁ+hE> 24 Vo +

om 20_'"VVC><]7:|UE7V:

e
(2mec)

L, ho-,  h*k? h L
— _k—» — . — . — , (k:) . 5
{Qmep + Vo + — D+ . + (Qmec)zg VVe x p} ug, =€ ug,, (5)

as long as g k < 1 (g lattice constant) perturbation expansion of the energies with respect to
kp converges. There are no corrections of the energy linear in k. All matrix-elements of p’
between wave-functions transforming according to the same irreducible representation of the
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point group of the crystal are zero. To second order in k the energy is

. 27.2 h? V‘Eﬁ’,u u’lgﬁ’u
. <’“>Zz—niﬂ# <mz<eu>—<eu> >

(6)

It is a linear combination of products of the components &, .k, , k. of % which has all symmetries
of the crystal. It must be proportional to k2. For the conduction band starting from the sa-state
the dominant contributions come from the pb-states. |

ec(E>:?<l+2§M+Q§W—mN> (7)

me me (Esa - eq) e (Esa - ed)

(The indexes q,d indicate the splitting of the pb-states into a quartet and a doublet by spin-orbit
coupling.) The bracket in Eq. 7 is larger than 1, meaning a reduction of the mass.

9 9 (=1)
m*:m6<1+ Pol”  |Pdl ) ®)

meAe,  meAey
Depending on the relative size of the matrix-elements and energy gaps m* may get rather small
(.02 m, to .07 m, in 111-V compounds).
3 Dynamics of Electrons in crystals

The motion of electrons in free space is described by superpositions of plane waves. In crystals
superpositions of Bloch waves are appropriate

v =3 v (F) ©)
kv

If the k’s are concentrated around the T point of the Brillouin-zone, suitable Bloch-functions
normalized with respect to the volume V of the crystal are

Vi, = exp <ZEF> uoy (7, 5) VYV (10)
formed with the band-edge functions which are independent on k. With them one may separate
the action of external forces from the action of the crystal-forces inside the Wigner-Seitz-cell.

The crystal-forces vary on the scale of the lattice constant g, external forces on a scale S and
normally S > ¢. The wave function ¥ may be written in the form

U = Z ug, (7,8) 2, (T, 9)

with a slowly varying envelope-function
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Fig. 3: Schematic picture of the variation of u, (upper curve), = and ¥ (lower curves blue and
cyan, respectively) along a chain of crystal atoms.

The external potentials V' and Ainthe Schrodinger equation

I = ~ .
{ lC2+Vc+V+g,uBE-<B+M><IC>—E}\I/:()

Me 2em,c?

(I@ =p+ e A kinetic momenta) are constant across the Wigner-Seitz-cell and do not act on the
u’s. p, Ve, & do act on both the »’s and =’s and lead to coupling of the »’s. Expansion with
respect to v yields a set of coupled differential equations for the envelope functions

1
0= 607,/—€—|—2

Me

<ﬁ+ eA‘)z YV 4 (95} =+ Y OYE,. (11)
vy

with coupling operators acting on the =’s

0¥ = (v ’ﬁ/me V) BVV/ (4mec?)

V) (7+ed) + (v )ﬁ/me

+(v |pupa| V') - [E + VV/(2em.c?) x <ﬁ+ eff)] ,
defined by operators acting on the u,’s
I = '+ hd x VVe/(4me?) i =pxda, and 7.

Only & in O has diagonal elements, acting on the envelope functions like an effective magnetic
field with a spin-orbit contribution. The inter-band couplings may be resolved by the method
of back-folding. For a particular state (or group of states), e.g. v = ¢ for conduction (or
v = v for valence) electrons, energetically separated from the other states, the reduced system
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of equations with v # ¢ is a regular linear inhomogeneous system of equations. There is an
operator G¥" which allows to express the =,’s by =, leading to

(ﬁ+ eff)g +V 4 0= Y 06705 | . (12)

¢ v,v'#c

1
0= ¢ —
[e 6+2

G may be expanded with respect to the off-diagonal part and a systematic expansion in terms of
spin and kinetic momenta K, , ., = (p+eA),,. . results. In lowest (second) order G is diagonal,
GY = 6" /(e. — €,), with the effect, that all diagonal terms get re-normalized, most important:
the free electron mass m. is replaced by an effective mass m* and pp is replaced by ¢*up
due to the non-zero commutators of the kinetic momenta [/C,; Kg] = B,. In third order the
spin-orbit-term is extended by

Hp x {0.K,, lC; — K2} + {0, Ky, K2 — K2} + {0.K., K2 — lC;} (13)

called Dresselhaus term [1]. Here, { A, B} = 1/2(AB + B.A) is the anti-commutator. To this
order of approximation an effective mass Schrodinger equation

HE, = KP4+ V +g*ugd- | B+ x K
2m* 2em.c2
+ Y {0:K., K, —K2}| E. = €E, (14)

c.p-(x,y,2)

results for the dynamics of electrons in a non degenerate band. The quantity - is the material-
dependent Dresselhaus parameter [2].

4 Restricted geometry

By epitaxial growth it is possible to form sandwiches of layers with different chemical com-
positions. Electro-chemical forces adjust the the Fermi-level and influence the energies of
the electrons vertical to the layers, i.e. an external potential V' acts on the electrons depend-
ing only on their position vertical to the plane of the layers. There are suitable combinations
of layers, which generate quantum-well potentials V,,, as shown in Fig. 4. These potentials
bind electrons in the central layer and enable the formation of a 2-dimensional free electron
gas (2DEG). Inside the layer the electrons can move freely. The wave-functions in Eq. (14),
= ~ &(2)o(x,y) factorize into functions & and ¢, describing the distribution of the electrons
across the quantum well and their motion in the plane, respectively. For electrons in the quan-
tum well 2-dimensional sub-bands are formed. Their distance in energy de is determined by
the thickness d of the active layer e ~ h?7?/(2m*d?). At typical electron densities n only
the lowest sub-band is occupied The Fermi energy is e = wnh?/m*. If the barrier materials
on both sides of the active layer are different, V,,, will be asymmetric with a nonzero average
gradient, 2*(¢ |VV,| €)/(2m.c)* = aré,. It defines the Rashba spin-orbit coupling constant
ag [3]. €. is the unit vector vertical to the layer.

Electron transport may be further confined to a 1-dimensional system by preparing narrow
wires with a lateral width 1/ down to a few 10’s of nm. The electrons see in addition to
the quantum well potential a confining potential Vj;,(z). As a reasonable guess, speculating
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0> —

Fig. 4: Sketch of the potential across a device consisting of three semiconducting layers. Elec-
trons are trapped in the bound states of V,,,. The thickness of the active layers is typically
around 5[nm] corresponding to a stack of 10 unit cells.

on an approximately constant distribution of the charges across the wire, a soft wall potential
Viv = Vo/ (exp [(W/2 — |x|) /0] + 1) is used in the following. In a long wire the in plane part
of = factorizes again ¢ ~ exp(+k,y)x(x) into a plane wave factor for the motion along the wire
and a spinor function x. It determines the density and spin distribution across the wire via a
second order differential equation following from Eq. (14). With a magnetic field B = Be.
deduced from A = (0, Bz, 0) the kinetic momenta are

h ho
Ko= 2 Ky=hk,+eBr; K.= .

The Rashba- and Dresselhaus terms in Eq. (14) are

O' _— _—
Y20z

Hr = [ax (hk, + eBx) — h@] O;_LR

Hp =p(€ ch‘ §) (Uy (hky +eBi) — Uxh—a)

10x
+7p/2 [0, (KoK + KAK,) — 0y (K2 + K2K,)] - (15)
Equation (14) is then
S (KZ+K3) +VW+HR+HD+g*uBB} Y =Ex. (16)

A list of values of the parameters ar, vp for 111-V compounds is given in [2] (Tables 6.3 and
6.6.). Eq. 16 is a system of ordinary differential equations and may be solved by any standard
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Fig. 5: Sketch of the confining potential Vy;,. Typical dimensions of the wires are indicated.

numerical differential equation solver. It should be pointed out that the full Dresselhaus term
can be included. In existing treatments of the Dresselhaus term [4] only the first part - linear in
K., - of Hp was considered. This is justified as long as k7 < (KZ) ~ 1/d”. However, at high
enough density 2 may come close to 1/d* and the third order terms will contribute significantly
[2]. In the following the standard definition 3p = hvp(|K?|) will be used for the Dresselhaus
coupling strength.

The 2-dimensional sub-band is split again into 1-dimensional sub-bands. However, the ener-
getic separation is now AE ~ h%n?/(2m*W?). Typically A€ < ep, thus many bands cross ez.
A typical x for electrons at e has a density distribution across the wire as shown in Fig. 6. It
has 30 density peaks of almost equal height. There are 30 other x with similar densities. The
total density, sum of these is constant except for a region close to the walls. This justifies the
assumption of a soft wall potential for wires.

Wire structures based on the material combination Ga, In;_,As (Gallium-Indium Arsenide), InP
(Indium Phosphide) were investigated experimentally and theoretically in [5]. The experimental
findings were analysed using Eq. 16. The parameters are in this case:

mx = 0.04m, ar = 54meVnm| [(p = 1meVnm] g¢* = —14
n = 0.005[1/nm?* ep = 33.[meV]

The following section is based on this example. The focus is on spin-orbit effects at zero
magnetic field.

5 Spin manipulation by electron transport through wires

There is a one to one correspondence between a spinor

X:<1U)):(gfz’h)



B5.10 Andreas Bringer

defined by two complex components and a unit vector € = (e,, e,, e,) defining the spin direc-
tion. Multiplying x with the phase factor U*/|U| (physically irrelevant) gives a representation
of v with 3 real quantities f, g, h. The spin direction is then defined by

gy =y or GG oy /
X=X er 16y e, g+ih ) \g+ih

The solution is
_ 2fg . 2fh . fP=g"—n
fPrgr+n’ P2kt T P2 h?

For the example state of Fig. 6 the local spin direction across the wire rotates clockwise from
+¢, to —e, inthe half space « < 0 (cf. Fig. 7). Onaverage it is oriented in negative x-direction.

(17)
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- 40 L

Fig. 6: Density |x|? = f? + ¢ + h? of a spinor at ep, k, = 50/TV.
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Fig. 7: Spin direction Eq. 17 of x Fig. 6.

(The small y-component is due to the Dresselhaus-term. With the Rashba term alone all states
would have the spins oriented in the (z, z)-plane.)
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To each solution x of Eq. 16 exists a solution x with the same energy but inverted spin structure
and slightly different wave number (for the example state 5k = —1.8/W). This is in line with
the general symmetry arguments discussed in the lectures of G. Bihlmayer and Ph. Mavropou-
los. By superpositions of y and y states can be prepared with spins pointing in a specified
direction at a given position in the wire. Along the wire x and y propagate with different phase
velocities. The spin rotates along the y-direction. The length for one complete revolution is
As = 4m/dk. Based on this observation a spin transistor device has been proposed [6]. A

FM Gate FM

| | ' 2DEG
Spinfransistor

Fig. 8: Datta-Das Spin-transistor [6]

spin-polarised current is injected by a spin polarized source. The spins rotate along the wire
and can be detected by a polarised drain. The rotation length A, can be manipulated by a gate
and enable signal transmission. The problem here is that many spin-paired states cross ex. A,
is different for all pairs. Even if an electron was injected with a well defined spin direction
it would be a superposition of many states which rotate differently. The information on the
original spin direction will soon be lost, a simple spin relaxation mechanism (cf. lecture of Ph.
Mavropoulos).

The strength of the spin-orbit interaction increases with k, as seen from Eq. (14). Neighboring
bands are degenerate at k&, = 0 for a wire with left-right symmetry. With increasing k, they
have the tendency to cross each other (cf. Fig. 9) These crossings are resolved by Hg p, such

-5 0 5 k W
Fig. 9: Band structure of the wire. Pairs of bands with opposite spin orientation indicated.

that the spin orientation is transferred from the energetically higher to the lower state. A series
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Fig. 10: confinement energy «., i.e. the total energy minus the kinetic energy in the y-direction,
of the lowest bands

of crossings appears along the k,-axis (cf. Fig. 10). As a consequence at e bands with the
highest £, will have the same spin orientation. For the case of square-well confinement the
first eight bands havg equal spin orientation The spin polarised part (red in Fig. 11) amounts to

1.0 - o
(@]
(@)
R
XS
g,
O T T

0 50 100 k.
Fig. 11: Density of states at ¢ W

approximately 10% of the total density of states at ¢. With an appropriately charged gate these
states could be filtered out.
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Appendices

A Spin-orbit matrix-elements

The diagonal matrix-elements of the spin-orbit interaction (v|Hgso|v) vanish. The defining
integrals of VV' x p, e.g. for the z-component (7" = (z, y, 2)):

0 0 0 0
dg_) v a_ a v A a_ v ] —
/U T U, <8ZL‘ Vcayu& ay VC axUQ )

B 0 0 9
3 _ _ — 1
/Ud Ve (396 {uo’”ayuo’”} dy {uo’"axuo’"D 0 a8

are zero, as seen by partial integration. The integral over the boundary of the Wigner-Seitz cell
U is zero because of the periodicity of the functions in the integrand.

Many off-diagonal matrix-elements (x:|Hso|v) either vanish because of symmetry or may be
transformed into one another by symmetry operations. A set of degenerate p-states has three
functions g, uo,y, 1o, Which transform like the components of 7. Then e.g. for the pair

U,z U0,z
o - . h (0 0 0 0
/Udgr U0, [VV X p]z Ug,z = /Ud3’f’ U0, ; (%Vca—yuo,z - a_yVC%UO,z) =
(via (z,y, z) — (—z, —y, z) -Symmetry)

. h (o0 0 0 0 . .
—/Udgr Up 2 " (%Vca—yuw — @VC%UO’Z> = — /Ud37" e [VV X D, uo,

Matrix-elements with two equal indexes are zero. For the pair wg ,, uo,,

" . . hfO_ 0 o 0
/Ud3r up e [VV X P, upy = /UdgT oz (a—xvca—yuo,y - @VC%“WJ =

(partial integration and [X,y]-symmetry)

 hfO_ 0 9., 0 . .
_/Ud?’mo,y " (%Vca—y%,x - a—yvcauw) N /Ud?’?“ uoy [VV X Pl e (19)

All matrix-elements <a\ IVV x pl, W> with pairwise different indexes are equal. They vanish

if there is an inversion center in the crystal. Inversion symmetry transforms the integrands into
their negatives. In crystals without inversion symmetry (e.g. 11-VI and 111-V compounds) they

may be different from zero and define A,, = (QW%F <a\ [VV x pl, |~y>, the analog A,, of
atom (cf. Sect. 2).

B p-band edge states with spin-orbit coupling

[VV' x p] generates the matrices

0 0 0 0 0 —iA,, 0 —1A, 0
Me=[0 0 —A, |M,= 0 0 0 M.=| 1w, 0 0].
0 1Ay O —1Ay 0 0 0 0 0
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Scalar product with & extends these to a 6 x 6 matrix

Mo — M. M, —iM,
TTA MM, M,

The eigenvalue equation for the energy e of the p-edge levels is (¢, : energy without spin-orbit
couplingand U/ : 6 x 6-unity matrix)

det [(co — ) U + Ms] = ((eg — € + Asp)? (€9 — € — 2A,,)) =0

has two solutions: € = ¢, + A,,, With 2 and € = ¢y — 2A,, with 4 eigenvectors. The corre-

sponding spinors are
( Ug,x — LUy ) ( Ug,~ )
— U,z U,z +1 Uo,y

Up,z + 2Uyy —2up, Uge — LUy 0 (20)
0 Uge + 2 U,y 2ug ; Ug,z — 2UQy
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1 Introduction

In the field of spintronics [1, 2] it is obviously highly important to gain control of spin popula-
tions, i.e., ensembles of spin-polarized carriers (electrons or holes). In paramagnetic materials
and in the absence of external fields a spin population represents a non-equilibrium state, which
after some characteristic spin relaxation time reaches equilibrium by becoming depolarized.
If, during this time, the spin population has diffused over a characteristic distance, then this
distance is called the spin relaxation length.

Spin relaxation has been studied for over half a century, long before the emergence of spin-
tronics. A number of experimental techniques, discussed in section 3, give direct or indirect
information on the relaxation time and length. Although phenomenologically one tries to boil
down all spin relaxation phenomena to a few parameters, defined in section 2, the related physics
is very rich, encompassing many effects and mechanisms which can vary with material, tem-
perature, etc. A summary of these mechanisms is given in section 4. However, perhaps the
most common source of depolarization is the spin-orbit coupling (introduced in section 5). This
manifests itself through a number of mechanisms, reviewed in sections 6-8.

The present manuscript is meant to be an introduction to the physics of spin relaxation in para-
magnetic metals and semiconductors. It should be noted, however, that spin relaxation in mag-
netic materials is also a very active field of research. In the that case, the equilibrium state
is spin-polarized, self-sustained by the exchange interaction; the term “spin relaxation” refers
again to the return to the equilibrium state after some distortion of the polarization. Furthermore,
spin relaxation in quantum dots is currently a subject of increasing importance and intense re-
search in view of their relevance in quantum computing. For a presentation of this subject, the
reader is referred to the manuscript by Carola Meyer.

2 Phenomenological aspects of spin relaxation and spin de-
phasing

Assume that a paramagnetic sample is subject to an external magnetic field B(t) = B, 2+ B, ()
that has a static z-component B, and a transverse (z-y) oscillating component, El(t). After re-
laxation, an initial spin population density 5(7, ¢ = 0) will obtain an equilibrium value s, z (the
transverse field is considered weak and rapidly oscillating so that the equilibrium value is along
the 2 direction). The magnetization is given in terms of the spin density as M (7, t) = ~ §(7, t),
with ~ the gyromagnetic ratio (see also Appendix A). The phenomenological equations describ-
ing the spin dynamics are the Bloch equations with an additional diffusion term, represented by
a diffusion constant D:

9D _ (5w By, - =00 4 pyrg ) ®
ot T2

90 _ 5 By, — 3T L por ) @
ot T2

9s:(N8) (35 By, — =D =5, oo )
ot 71

In these equations, two characteristic times appear: the relaxation time 7, associated with the
z-component of s, and the dephasing time 7, associated with the transverse components. These
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depend, in general, on the magnetic field. Under weak magnetic fields, if carriers in the system
are electrons (e.g. in metals or n-doped semiconductors) and the system is isotropic, one has
71 = 72, inthis case, following Zuti¢ et al. [1], we will denote both 7, and 7, by 7. In anisotropic
materials, however, there is no guarantee that 7, = 75, but it has been shown that 7, < 27 [3].

The physical significance of 7, is that 1/7, gives the rate for the spin system to reach equilib-
rium by exchanging energy and/or momentum with the lattice. Particularly on application of a
magnetic field, the initially unpolarized electron system must exchange energy with the lattice,
coming from the Zeeman splitting of the electron levels, to acquire the final polarization sq Z. In
the absence of an external field energy exchange is also possible (e.g. if the spin population is
produced at high-energy states by optical pumping), but there is always a momentum relaxation
that accompanies the spin relaxation (we will return to this in the description of the Elliott-
Yafet and D’yakonov-Perel” mechanisms). 1/7 is thus the equilibration rate of the diagonal
components of the spin-density matrix [2].

On the other hand, 7, is associated with the equilibration of the non-diagonal elements of the
spin-density matrix [2]. If a spin population with perpendicular orientation with respect to the
magnetic field is injected in the sample, then this will start precessing about the magnetic field
with a frequency that depends on the g-factor. However, the g-factor itself depends on crystal
momentum and energy. Therefore there is bound to be a dispersion in the precession frequency,
coming from the spread of the initial population in k-space. On top of that come collisions that
further spread out the ensemble in k-space. Thus, 1/, is the rate at which an initially polarized
ensemble, peaked around some particular spin direction perpendicular to the magnetic field,
will lose its phase coherence in spin space ending up in an unpolarized ensemble.

In the phenomenological approach to spin relaxation it is frequently implied that there is a
thermal *“semi-equilibrium” separately among spin-up (7) and spin-down (|) electrons, charac-
terized e.g. by different Fermi levels EIE and Elﬁ which in a first approximation do not interact
with each other. In a second approximation, however, they do interact, and (EL, E}m) are taken
as time-dependent parameters that ultimately converge to a common Fermi level Er. This argu-
ment was physically justified by Overhauser [4] by noting that the characteristic spin-flip times
are long in comparison to the characteristic collision times which lead to momentum and energy
relaxation. In the same publication, Overhauser also set forth to calculate the time dependence
of E]. and E. due to several mechanisms, and from these the spin density, and showed that a
relaxation time approximation (0s/0t = —§/, in the absence of fields) is justified.

We close this section by commenting on the notion of spin-flip length A vs. spin relaxation
length Ls [5]. An electron in a crystal, having an average Fermi velocity vg, can undergo
many collisions at impurities, phonons, etc., that change its momentum p, before a spin-flipping
collision. If the mean free path between collisions is L, then the momentum relaxation time
is 7, = L,/vp. If N collisions are needed before a spin flip, then the spin relaxation time is
75 = N, and the electron has travelled a total length of Ay = NL, = L,7/7,. However,
due to the random collisions this length has been travelled in a random “zig-zag” motion, and
is therefore not the total distance from the point of origin. In the absence of an external electric
field, the total distance from the point of origin is determined by the electron random walk and
is therefore proportional to v'N: Ly = L,\/(1/3)7/7, = /(1/3)LyAs = +/(1/3) LyvpTs =
v/ Dr,. This is the spin relaxation length, also called spin diffusion length. D = L,vr/3 is the
diffusion constant, with the factor 1/3 coming from averaging in three spatial directions.
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3 Experimental methods for detecting spin relaxation and
dephasing

We now summarily discuss some experimental techniques for detecting spin relaxation and
dephasing time and length. Among these there exist spectroscopic techniques, real-space, volt-
age or magnetocurrent measuring techniques, and combined real-space real-time spectroscopic
methods.

e Conduction electron spin resonance (CESR) is a technique based on the resonant absorp-
tion of electromagnetic radiation. Under the influence of a static external magnetic field
B, the electron levels split by an energy AFE = gugB. This is actually also a phenomeno-
logical definition of the g-factor. Under incident electromagnetic radiation of frequency
v, one obtains a resonance by varying the field B up to the point hv = gugB. The posi-
tion of the resonance gives information on the g-factor, while the width of the resonance
gives information on the spin relaxation time [6, 7]. (Due to orbital-momentum effects,
the g-factor differs from the free-electron g, = 2.0023 - - -. The deviation can be partic-
ularly large in some semiconductors; e.g., for GaAs it varies between ¢ = —0.47 and
g = —0.33 for temperatures between 0 and 300 K [8].)

e Nuclear polarization measurements can be used [9] to derive the electron spin population
s in semiconductors, and from this 7;. These experiments rest on the hyperfine interaction
of electron spins with nuclear spins IN at positions RN, Hye ~ ZR IN So(r— RN) due
to which the nuclear spins are polarized in the presence of polarlzed electrons (actually
the nuclear magnetic moments react to the magnetic field created by polarized electrons
on contact). Because the nuclear gyromagnetic ratio is small, the interaction is weak and
the timescale of these experiments can be of the order of several hours.

e Polarized photoluminescence [10] refers to the emission of circularly polarized light due
to the recombination of spin polarized electrons with holes, after optical pumping (i.e.,
creation of spin-polarized electron population by absorption of circularly polarized light
[9]). This method is used in semiconductors. From the degree of circular polarization of
the emitted light, together with selection rules, the spin polarization of the recombining
electrons is derived (in the absence of spin polarization, the emitted light is not circu-
larly polarized). In early experiments [10] only a lower bound to the spin relaxation time
could be determined if the recombination time was known. However, recent techniques
allow for time-resolved measurements with picosecond accuracy, and the full dynamics
of conduction electron polarization is disclosed [11]. Polarized photoluminescence is
also used to detect the efficiency of electrical spin injection experiments. Polarized elec-
trons injected from a ferromagnet into the semiconductor conduction band traverse the
semiconductor and recombine with unpolarized holes in a quantum well at the far side
of the junction. Again the degree of spin polarization can be calculated by the polariza-
tion of the emitted light. Here, knowledge of 7, and of the electron drift velocity in the
semiconductor can provide information on the polarization at the injection point [12].

e Faraday and Kerr rotation are phenomena related to the change of angle of linear po-
larization of light when it is transmitted through (Faraday) or reflected by (Kerr) a mag-
netized sample. Application of an external magnetic field can bring a splitting of the
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chemical potentials for spin up and spin down, which is gradually equilibrated by elec-
tron spin-flips resulting in a magnetization; during this equilibration, the time-dependent
magnetization is probed by Kerr rotation, revealing 7, [13]. Alternatively, spin popula-
tions can be pumped by circularly polarized laser and later read-out by the Faraday or
Kerr rotation of linearly polarized laser. By virtue of the high (sub-picosecond) resolu-
tion of pump-probe experiments, these measurements can reveal the propagation of spin
populations in real space and real time [14, 15].

e Electrical spin injection and detection in “non-local’”” experiments. This type of exper-
iments was first introduced by Johnson and Silsbee [16]. A spin-polarized current is
injected into a non-magnetic material (metal or semiconductor) from a ferromagnetic
contact, say at position z = 0, and travels to the opposite electrode at some position
x < 0 (see figure 1). However, the non-magnetic material extends also in the direction
x > 0, and part of the spin population can diffuse also in that direction. Then one has a
so called “pure spin current” at = > 0, i.e., spin current without charge current. The spin
diffusion causes a chemical potential imbalance in the two spins, 4 (z) # (), which
can be detected as a voltage difference by a second “read-out” ferromagnetic contact at
x > 0. The difference p(z) — p)(z) ~ exp(—x/L,) drops with distance and becomes
negligible after the spin relaxation length. Thus by changing the position of the read-out
contact, the spin relaxation length can be identified as the distance where there is no more
voltage difference.

e Transit-time, spin-injection magnetocurrent experiments. In case of electrical spin injec-
tion and detection in semiconductors (i.e., via a ferromagnetic contacts), the experimental
setup can consist of a four-terminal device with spin-valve junctions for injection and de-
tection and an accelerating voltage V, through the semiconductor (see figure 2). Such a
device was used by Appelbaum and co-workers [17, 18] for demonstrating spin injection
in Si. The injected spin population precesses with frequency w = ~B due to an external
magnetic field B, and the collector current /. oscillates with the accumulated precession
angle wr,: I. = Iy + Aly(7,) cos(wTy) = Iy + Aly(7,) cos(yB.). The transit time
through the semiconductor, 7., can be tuned by V, and evaluated by the period of os-
cillation as a function of B. On the other hand, the magnetocurrent Al,(r,) (difference
between maximum and minimum collector current) depends on the ratio 7, /7. By fitting
an exponential decay to data for various transit times, Aly(7,) ~ exp(m./71), the spin
relaxation time can be found [18].

e Giant magnetoresistance (GMR) values depend on the spin diffusion length of the ferro-
magnet and of the (metallic) nonmagnetic spacer. Within the Valet-Fert model [19], GMR
in current-perpendicular-to-plane geometry can be calculated by using the spin diffusion
length as an input parameter (among others). By fitting the Valet-Fert model to measured
GMR values, the spin relaxation length can be extracted [5].

e \Weak antilocalization experiments are based on the change of resistance by application
of a magnetic field in two- or one-dimensional structures (ultrathin metallic films, two-
dimensional electron gas, nanowires etc.). The effect is due to a change from destructive
to constructive interference of electron paths upon application of the field, as electrons are
scattered by impurities. The change in resistance is related to the phase relaxation length
of the electrons; spin-orbit coupling at the impurities gives additional contributions [20]
that can be experimentally observed.
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Fig. 1: Schematic description of the non-local measurement experiment for the spin relaxation
length. The chemical potential difference, Au(z) = () — py(x), is read out as a voltage
difference when switching the magnetization of read-out contacts at various x. At x larger than
the spin-relaxation length, the potential difference becomes negligible.

Depending on material, temperature, doping, etc., the spin relaxation times can vary by orders
of magnitude. For example, a collection of data [21] in n-doped GaAs at low temperatures
(4 K) shows a spread of 7, between 0.01 and 100 ns, depending on donor concentration. In
pure Si, 7, = 200 ns was reported at 85 K and 65 ns at 150 K [18]. Among metals, probably
the longest spin relaxation time is found in Li, which is chracterized by very low spin-orbit
coupling. Depending on impurity concentration (Li samples between 99% and 99.9% pure)
Feher and Kip [6] report 7, between 3 and 300 ns at low temperatures.

4 Mechanisms of spin relaxation and dephasing

There are numerous phenomena and mechanisms that lead to spin relaxation. Which mecha-
nism applies to a certain material can depend on whether the material is a metal or a semicon-
ductor, on the strength of spin-orbit coupling, on the presence of inversion symmetry, on the
shape of the Fermi surface, on the gap with, etc. The type of mechanism that applies is not only
material-dependent, but also sample-dependent (sample size, type of impurities), and also de-
pendent on the experimental details (temperature, density of excited spins). Here we summarize
a number of possible spin relaxation mechanisms. In the next sections, after a brief introduc-
tion to spin-orbit coupling, we focus on its effect to spin relaxation via three mechanisms: the
Elliott-Yafet and D’yakonov-Perel’ mechanisms and spin-flip scattering at impurities.

e The Elliott-Yafet mechanism [22, 3] is most important in crystals with structural inversion
symmetry, where the Bloch states have predominantly up or down spin. It is based on
momentum scattering at phonons or impurities. The with a small but non-zero probability
the scattered electron can end up at a state of the band structure with opposite spin. We
discuss it in more detail in section 6.

e The D’yakonov-Perel” mechanism [23] applies in semiconductors without inversion sym-
metry and semiconductor heterostructures. It is based on the appearance of a spin-orbit-
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Fig. 2: Left: Schematic description of the four-terminal spin injection device of Appelbaum
and co-workers [17, 18]. In the emitter circuit, only hot electrons (high above Er) are able to
penetrate the barrier. Due to the spin-dependent band structure of Ferromagnet 1, spin-down
electrons are scattered and lose energy, while spin-up electrons can traverse without significant
attenuation and enter the semiconductor. There they are accelerated by the voltage V, to a drift
velocity vy, their spin precesses due to an external magnetic field, and they reach the collector
circuit after transit time 7. Here, Ferromagnet 2 allows only spin-up electrons to enter the
collector circuit and be detected. The collector current I, depends on the spin polarization
(magnitude and direction) of the incident electrons at the second interface of the semiconductor
spacer: 1. = Iy + Alycos(yB,). Right: Schematic view of oscillations of collector current
due to spin precession caused by an external magnetic field. The damping at high fields is due
to the Hanle effect.

induced, E-dependengspin quantization axis, around which electrons precess. Momentum
scattering to another & changes the precession axis, so that in the end all information about
the spin phase is lost. We discuss this in more detail in section 7.

e Spin-flip scattering due to impurity spin-orbit coupling can obviously also lead to spin
relaxation. We focus on this subject in section 8.

e The Bir-Aronov-Pikus mechanism [24] is due to exchange interaction of electrons with
holes. The interaction hamiltonian is of the form H = AS - J (7. — i), where A is
a parameter describing the exchange strength, S is the electron spin operator, J the hole
angular momentum operator, and r, 7}, the positions of electron and hole. This exchange
interaction can lead to spin-flip scattering with cross-section (and ) differing according
to temperature, hole concentration, etc. [1]. The Bir-Aronov-Pikus mechanism applies to
semiconductors.

e Exchange coupling among spin-polarized conduction electrons can enhance the spin re-
laxation time in semiconductors. This was observed by Stich et al. [25] by photoexciting
different populations of spin-polarized electrons in a two-dimensional electron gas sys-
tem. As the initial degree of spin polarization was varied between 0 and 30%, a signifi-
cant increase of 7, from ~ 25 ps to ~ 200 ps was observed. Calculations [25] including
a Hartree-Fock term in the electron-electron interaction are consistent with experiment,
contrary to the case when the Hartree-Fock term is neglected; thus the importance of the
exchange coupling is demonstrated.
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e Hyperfine interaction with nuclear spins can be the most important source of spin relax-
ation in semiconductors at low temperatures, when other degrees of scattering are frozen.
This is especially true for the case shallow donor states (i.e., impurity bound states close
to the conduction band), which are occupied at low temperatures. The hyperfine inter-
action hamiltonian, Hys = 83” P uphyn ZR In-5 S — RN) is weak because nuclear
gyromagnetic ratios -y are orders of magnltude smaller than the electronic one, therefore

the corresponding spin relaxation times can be long.

e The Hanle effect, manifest in transport experiments, is the dephasing of spin populations
when precessing in a magnetic field during propagation. Due to diffusion, different elec-
trons traverse the sample at slightly different times 7;,. The accumulated total angle of
precession for each electron is ¢ = wm,, Where w is the precession frequency. A spread
ATy, leads to a spread in A¢ = wATr,. As w is proportional to the magnetic field B,
if B is large enough A¢ becomes comparable to ¢ and the observed spin polarization is
suppressed [18]. This suppression at high fields is shown schematically in figure 2 (right).

¢ Inelastic electron-electron scattering in synergy spin-orbit coupling can lead to a signifi-
cant reduction of the spin relaxation time as the initial spin population energy rises above
the Fermi level. A recent calculation [26] based on the GW approximation including
spin-orbit coupling shows a reduction of 7, by up to three orders of magnitude in metals
(depending on the material) if the initial spin is at a modest 0.3 eV above the Fermi level;
such energies are common in magnetic junctions due to the bias voltage.

e Electron-electron scattering at magnetic impurities can lead to relaxation of the spin cur-
rent by the following mechanism: a propagating spin-up electron hops on a magnetic
impurity site, temporarily paying Coulomb energy due to the higher occupation of the
impurity; this energy is regained when an electron hops off the impurity. If the second
electron is of spin-down type, the current spin-polarization has changed sign, while the
impurity has undergone a spin flip.

In general, more than one mechanisms for spin relaxations are simultaneously present. If they
can be considered as independent (this is in many cases, but not always, a correct assumption),
and if each one of them is characterized by a relaxation time 7;, then relaxation rates can be
added and the combined relaxation time is given by [4]:

Ly L @

Ts ; T;
An additional mechanism that affects the spin dephasing time is motional narrowing. It is the
inhibition of phase relaxation caused by randomly fluctuating forces [1]. In the presence of
a constant Zeeman field the phase of a spin changes by A¢ = wAt over time ¢. If, on the
other hand, the field is rapidly and randomly fluctuating then the phase will perform a random
walk depending on the correlation time of the fluctuations 7.. The average accumulated phase
will thus be proportional to the square root of the steps of the random walk, \/t/7., and to
the accumulated phase at each step, wr.: A¢ ~ /t/7. (w7.) = wy/t 7. [1]. As 7. becomes
shorter (the fluctuations become more rapid), A¢ decreases: the spin does not have enough
time to accumulate phase in any direction, dephasing is inhibited, and the spin dephasing time
increases. This effect is important for instance in the D’yakonov-Perel” mechanism.
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An example of different mechanisms being important at different temperatures in the same
material can be seen in the experiments by Lepine [27] (Lepine’s results are conveniently sum-
marized in figure 1V.8 in the review by Fabian et al. [2]). Lepine considered spin relaxation in
Si doped with P, which provides a donor state 45 meV below the conduction band edge. Three
temperature regimes are revealed and discussed [27, 1, 2]. For T' < 50 K, the electrons are
trapped in donor bound states, and the hyperfine interaction is responsible for the relaxation;
here, 7, ~ 10 ns. As the temperature rises to 50 < T' < 75 K, 7, increases because of motional
narrowing of the trapped electrons due to scattering with excited electrons at the conduction
band. At 75 < T < 150 K, also the first excited donor state becomes populated and contributes
to the hyperfine-induced relaxation; due to motional narrowing, 7, continues to increase, up
to a peak at 120-150 K (at the peak value, the measured 7, is between 90 and 30 ns, strongly
dependent on donor concentration which ranges between 7.4 x 10 and 8 x 10 /cm?; high
concentration leads to low 7). Above 150 K the conduction band is richly populated and the
Elliott-Yafet mechanism sets in, causing a decrease of 7.

5 Spin-orbit coupling

Spin-orbit coupling, in synergy with momentum scattering, is probably the most common
source of spin relaxation. Therefore we shortly introduce the effect and its consequences on
the band structure, before discussing the spin-orbit induced relaxation mechanisms. For further
information, the reader is referred to the manuscripts of G. Bihlmayer and A. Bringer in this
volume, or to any book on quantum mechanics (more specialized are, e.g. the books by Rose
[28] and Strange [29]).

5.1 Short introduction

The spin-orbit coupling describes the coupling of the electron spin moment to internal or ex-
ternal electric fields. In a classical picture, it can be understood by realizing that an electric
field, Lorentz-transformed to the frame of reference of a moving electron, contains a magnetic
field component that couples to the electron magnetic moment. However, quantum mechani-
cally it is not obvious how to define a reference frame moving with the electron. In quantum
mechanics, the spin-orbit coupling follows from the Dirac equation as a relativistic effect. On
simplifying the Dirac equation to the Schrodinger equation with relativistic corrections added
to the hamiltonian, the term describing spin-orbit coupling is

eh =
SOC:mE'(pXO-)- (5)

Here, E = ﬁV(F) is the electric field, with 1/ (7) the electrostatic potential. From this equation
it is evident that the spin-orbit hamiltonian, in contrast to a usual potential, is non-local in nature,
as it includes a derivative of the wavefunction via the linear momentum operator p.
In the case of a central potential, V () = V/(r), the spin-orbit hamiltonian can be rewritten after
some manipulations in the form
eh 1dV(r) - -
Hypoe = —5—— L-&d=¢0r)L-S 6
CAm2er  dr 7 =) ©)
whence a coupling of the electron spin with the angular momentum, 12 = 7 x p, becomes
evident (¢£(r) is a shorthand notation for (h/2m?2c?)(1/r)dV/dr, and S = & /2 is the spin
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operator). In atoms, in principle one must account for the interaction of the electron spin with
the electric field generated by all other electrons, plus the nucleus. In practice, however, mean-
field equations are in many cases adequate, meaning that an average potential is taken, e.g. the
one found within density-functional calculations. This mean-field approximation is valid partly
due to the fact that the most important contribution in Eq. (6) comes from the strong nuclear
electric field, from positions r close to the nucleus—in the vicinity of the nucleus, Eq. (6) gives
(1/r)dV/dr ~ —Z|e|/r* (Z is the atomic number). This is also the reason that heavy atoms
show, as a rule, stronger spin-orbit coupling than light atoms. Furthermore, the appearance of
L in the interaction implies that s-electrons are immune to spin-orbit coupling. The interaction
is expected to be especially strong for p orbitals that are closer to the nucleus than d or f
orbitals'—the term 1 /72 close to the nucleus outweighs the higher orbital momentum of 4 and
f orbitals.

In solids it is obvious that the potential cannot be spherically symmetric, even within mean-
field theory. However, in most cases an atom-site-dependent orbital momentum is defined,
and one accepts as an approximation a spin-orbit hamiltonian of the form _ (1/r)dV (" +
ﬁn)/dr, where R, are the atom positions and 7’is confined in the atomic cell. Again the physical
argument for this approximation is that the spin-orbit potential is spherical where it is strong
(close to the nucleus), and negligibly weak in the interstitial region, where non-spherical terms
appear.

It is mathematically convenient, but also insightful, to separate the term L-S=
in EqQ. (6) in the following manner:

—

1 L-& appearing

. 1
L-¢=L.0.4 (Lo + L o). (7

Here, L. = L, + iL, are raising and lowering operators of the z-component of the angular
momentum (and similarly for the spins). Thus, denoting the angular momentum eigenvalues by
[ (for L?) and m (for L), action of L, onastate |/, m) yields a state |I,m+ 1), unless m has the
highest possible value, m = [, for which L. |l,m = [) = 0 (similarly for lowering m by L_).
For the electron spin, s can only take the values +1/2 (representing the spinor wavefunctions
1) = () and |]) = (9)), so that the only non-vanishing results are o | |) ~ [ 1), o_| 1) ~ | ]).
In Eq. (7), the first term is spin-conserving, while the second is spin-flipping and most important
for spin relaxation. We see, e.g., that action of the operator L - & on a wavefunction |1, m)| 1)
adds an admixture of |I,m + 1)| |) due to the term L o _. This means that, starting by a pure-
spin, pure-angular-momentum state, the action of the spin-orbit coupling produces a beating
between higher and lower m and up and down spin. l.e., the s and the m are not constants of
motion. However, the beating does not change the total angular momentum /, which remains a
constant of the motion. Also, a spin lowering is accompanied by a raising of m, so that the total
z-component m; of the total angular momentum j, is not changed. These rules are elegantly
proven by observing that the squared orbital angular momentum, L2, and the total angular
momentum, J = L+ %&, commute with the spin-orbit hamiltonian: [L?, Hy,.] = [f, Hgo] = 0.
There are two exceptions to the spin-beating: the spin-up state of highest m and the spin-down
state of lowest m are eigenstates of the spin-orbit hamiltonian, because application of the spin-
flip term on these gives zero (for example, starting from |/, m = [)| 1) one can neither raise the
spin, in order to lower m, nor raise m, in order to lower s). However, such states are unlikely to
appear as eigenstates in solids (except in cases with special symmetry), because hybridization
of wavefunctions of neighbouring atoms will create an admixture of different orbitals.

15 wavefunctions start as () ~ r, while d and f as 72 and 3, respectively.
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5.2 Basics of spin-orbit coupling in semiconductors

From the above discussion it follows that the basis |/, m)|s), although valid, should be better
replaced by a basis consisting of eigenstates of the spin-orbit operator (at least for the single
atom). These can be constructed by appropriate linear combinations. Actually, due to the
crystal environment of solids, the commonly used basis in the absence of spin-orbit coupling
is not |/, m), but linear combinations of the m states that correspond to oriented orbitals (such
as p., py, p.) but carry no z-component of the angular momentum.? In semiconductors, an
appropriate basis that accounts for the spin-orbit coupling is given then (up to normalization
prefactors) by the following linear combinations [1]:

10,0) 1) =[)17) (G=35mi=3 Ts (a)
10,0) 1) =[s)[1) (G=35m==3) Ts (b)
LD =101 =(pa) +ilp)) [L) = Ip) 1) (G=5,m;=—3) T7 (c)
[L=DIN+1L,0) 1) =(p) —ilp) D +1p) [1) (G =35m=—3) Tr (d)
LI = (Ip2) +ilpy)) [T) (G=5m=3) Ts (e)
LD +2[L,0) 1) =(pa) +ilp)) [ +20p) 1) (G=35my=3) Ts (f)
L, =1)11) =2[1L,0)[1) = (Ipa) —ilp,)) [ 1) = 2lp2) [1) (G=3.m;=—3) Ts (9)
L, =11 = (Ip2) =i lpy)) 1 1) (G=3m=3 Ts (h)

(8)
Expressions (8a,b) are used to describe the conduction s-band, while (8c-h) are used to describe
the valence p-band, including heavy holes, light holes, and the split-off band. The notation
(I's 7,5) refers to the irreducible representation of the states.
A typical band structure of a semiconductor of the diamond structural type (e.g., Ge) or zinc-
blende type (e.g., GaAs) is shown schematically in figure 3. The most severe effect of spin-orbit
coupling is the splitting of the valence band top and the admixture of states of different spins.
The former has consequences for the temperature-dependent hole population, while the latter
is of major interest for spin transport: the mixed-spin character of some of the I'y states, in
particular (8f and g), means that hole spin polarization holes has a very short lifetime. Therefore,
experimental attempts towards spin transport in semiconductors are focused on electrons.
A further effect of spin-orbit coupling in semiconductors is the spin splitting of the conduction
band, which, however, is much smaller and only present if there is no inversion symmetry in
the lattice. We discuss this in section 5.4.

5.3 Systems with inversion symmetry

Although the spin-orbit coupling is expected to lift of degeneracies, in many metallic systems
(e.g., alkali and noble metals) it is clear that there is a single branch of the Fermi surface,
indicating a double (spin-up-spin-down) degeneracy of the bands. This is due to the presence of
space-inversion symmetry in these systems; the same is true for the conduction band degeneracy
of diamond-structure semiconductors (as is Si and Ge). A comprehensive discussion of the

2For example, [l = 1,m = 1) = (Jpa) +ilp,))/V2, |l = 1,m = 0) = [p.), |l = 1,m = —1) =
(Ip2) = i |py))/ V2.

3The magnitude of the splitting Aq reflects the spin-orbit coupling strength of the p-states. As the atomic
number increases, Ay is enhanced. E.g., Ag = 0.044 eV for Si, 0.295 eV for Ge, 0.341 eV for GaAs, and 0.75 eV
for GaSbh. Note that in I11-V and 11-VI semiconductors, the p-states of the valence band edge are centered at the
anion, therefore the anion atomic number is most important for A,.
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(A): No spin-orbit coupling  (B): spin-orbit coupling (C): spin-orbit coupling,
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Fig. 3: Schematic description of the effect of spin-orbit coupling on the direct-gap semicon-
ductor valence and conduction bands (in semiconductors of tetrahedral geometry). Numbers
indicate the degeneracy of each band (including spin degeneracy). 4, is the spin-orbit splitting;
“Ih*” stands for light holes, “hh” for heavy holes, and “soh’ for holes of the split-off band. (A):
Band structure in the absence of spin-orbit coupling. (B): Spin-orbit coupling is present, but
the structure has inversion symmetry (diamond structure). Then a splitting of the valence band
occurs, corresponding to orbitals of the type (8e-h) for the heavy and light holes and type (8c,d)
for the split-off holes. (C): In the absence of inversion symmetry (e.g., zinc-blende structure or
at semiconductor interfaces), the conduction band also splits as described by the Dresselhaus
or Rashba hamiltonians. The arrows on the conduction band indicate the k-dependent spin
quantization axis. (D): Mechanism leading to the valence band splitting. In a first step, the
I'7-type and I's-type orbitals split with respect to each other. However, crossings that appear
between them at finite £ must lead to hybridization, leading to anti-crossings (right).
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subject, based on an analysis of the action of time-reversal and space-inversion operators in the
presence of the spin-orbit hamiltonian, is given by Yafet [3].

Although the band degeneracy is not lifted, the hamiltonian eigenstates «/; cannot be assigned
a single spin direction any more. Nevertheless, in most cases it is possible to choose ;; so
that they are predominantly of spin-up or spin-down character. Following Fabian and Das
Sarma [30], we denote these states by ¢,z if they are of spin-up character on the average,
e, if (U, 54S:\¥,5,) > 0,and by o,z if (4,7 [S:1¢,z,) < 0. Elliott [22] has discussed the
spin-down admixture in Vit (and vice-versa) via a perturbation-theory approach as follows.
Suppose that, in the absence of spin-orbit coupling, ¢z, = Xzl T)- On switching on spin-orbit

coupling, transitions to other states n'k have to be accounted for (E does not change, because
the spin-orbit potential is lattice-periodic). In first-order perturbation theory we have:

iy = bugl 1+
> (0 |<xg?_ . ];q\fm D a & KX?EI: . i’if”’;” AN U]
= T)Z)]TH )
> e ey DR ] ¢>] ©

where Eq. (7) has been used to separate the spin-conserving and spin-flip contributions, spin
angular momenta have been raised and lowered by S.., and spinor-orthogonality relations have
been employed ((s|s’) = dsy). The last term gives the spin-down admixture in ¢, 7. and is
usually small. However, if the energy difference £ . — E ;- becomes small, higher-order per-
turbation theory has to be employed, and the admixture can be large.

The perturbed Bloch wavefunction is thus written in the form

oy () = (a5 + b, 1) )€ (10)

where a_; and b ;- are the lattice-periodic parts. An analogous relation to Eqg. (10) holds for
(I l(F). However, the combination of time-reversal and space-inversion symmetry dictates

that the lattice-periodic parts of the spin-down wavefunction for +F are related to the ones of
the spin-up wavefunction for —k [3]:

—

G (1) = (@I =B, ((P)1))e 7 (11)

If we denote by E, ;. | the energy eigenvalues corresponding to the (non-pure-spin) eigenfunc-
tions 1, z, | (7), then

Bt = Enck) = Enyiy (12)

with the first equation following from time-reversal symmetry (also known as Kramers degen-
eracy) and the second by space-inversion symmetry; this is the degeneracy discussed in the
beginning of the present section.

Usually, but not always, a_;- and b_;- are such that |b _-|/|a, | < 1. Actually, the magnitude of
b, i is determined by the smallest among the energy differences E ; — E ,;, since these appear
in the denominator in Eq. (9). Calling this A, we have the rule-of-thumb estimation:

1,1/ il ~ (E)/A. (13)
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where (£) is a parameter resulting from averaging the spin-orbit coupling strength &(r).
Relations (10-13) are central to the Elliott-Yafet theory for spin relaxation, as we shall discuss
in section 6.

5.4 Systems without inversion symmetry

In the absence of space inversion symmetry, the band degeneracy given by the second equation
in (12) is lifted. This was realized early [31] for semiconductors of the zinc-blende type, where
the two atoms of the unit cell are inequivalent, or semiconductor heterostructures [32] and
two-dimensional electron gas where there are built-in average electric fields £ z as well as
inhomogeneities of the effective mass m*(z) (z is the direction of growth of the heterostructure).
In these cases, a remarkable effect takes place. The semiconductor conduction band splits in
two branches, but in such a way that each k-vector in the band structure is associated with its
own spin quantization axis. The effect is modelled by the hamiltonian
h? h

H = K+ =& -Q(k). 14
5k T3 (k) (14)

The first part is the usual parabolic dispersion relation of the conduction band with effective
mass m*, while the second part includes the spin. At each , a spin quantization axis Q(k ) is
defined, with the absolute value |(}(k )| determining the strength of the effect. The term ((k )-&
is a non-diagonal 2 x 2 matrix in spin space; diagonalization yields the two energy eigenvalues
of the spin-split band, with opposite spin eigenvalues (one in the direction ( and one in the
direction —():

B =l ey 1h|§z(;2)| (15)

KT, 9 9

The Kramers degeneracy, i.e., the degeneracy due to time-inversion symmetry, is still present,
yielding By = E g (with 7 and | defined with respect to the local spin axis), which also
implies that €3 is an odd function of k: O(—k ) = —Q(k ).
Q(E) is material-specific, depending on the spin-orbit coupling strength, the band gap, the
proximity to the interface etc. Within perturbation theory, it is seen that hamiltonian (14) arises
from the interaction of the conduction band, which is of s character, with the spin-split p bands.
Here we present only two cases, and we refer the reader to [1] and [2] for a broader discussion.

e The k3-Dresselhaus term is present in bulk semiconductors (111-V or 11-VI) of the zinc-
blende structure. In this case we have [31, 33]

ah?
o )17

Q(k) = (ko (K2 — k2) & + ky (k2 — k2 g+ k(K2 — k2) ) (16)
where L, is the band gap width and « is a material-dependent parameter (e.g., for GaAs
a = 0.07).

e The Bychkov-Rashba term [34, 35] is present in asymmetric quantum well heterostruc-
tures, in deformed bulk systems, and in the two-dimensional electron gas (see also lecture
notes by Gustav BihImayer and Andreas Bringer). In this case,

—

G(E) = apr (E X z) (17)
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Fig. 4. Constant-energy lines of the two-dimensional electron gas under the influence of the
Rashba hamiltonian. Arrows indicate the k-dependent spin quantization axis.

where £ is considered in the direction of growth in quantum wells (or, equivalently, per-
pendicular to the plane in the two-dimensional electron gas). Here, k is a two-dimensional
vector.

Schematically, the resulting spin-split conduction band structure is shown in figure 3C. The
spin-structure of the resulting constant-energy line in the case of the Rashba hamiltonian is
shown in figure 4.

In recent years, splitting of the Rashba type has been discovered also in the surface states of
metallic and semimetallic systems [e.g., Ag and Au(111), Bi(111), or surface alloys Bi/Ag(111)].
Since surface states are confined to the vicinity of crystal surfaces, they have many similarities
to a two-dimensional electron gas. It is interesting that the Rashba parameter and the splitting of
surface states in metals can be gigantic compared to semiconductor heterostructures. E.g., for
an GaSb/InAs heterostructure apr = 0.09 eVA [36] while for Au(111) agr = 0.33 eVA [37].
Taking into account that the Rashba splitting is proportional to & [see Eq. (17)], in Au, where &
is determined by the Fermi energy, the splitting is of the order of 100 meV, while in semicon-
ductor heterostructures, where the conduction band is very close to the Brillouin zone center,
it is much smaller. For a comprehensive description of the Rashba effect at metal surfaces we
refer to [38].

6 Elliott-Yafet mechanism

We turn now to a more detailed description of one of the spin relaxation mechanisms, namely the
Elliott-Yafet mechanism. The Elliott-Yafet mechanism is present in metals or semiconductors
with space inversion symmetry, and is based on the form (10) and (11) of the spin-dependent
wavefunctions together with momentum scattering.

Consider an electron occupying a predominantly spin-up state of the form (10): ¢, = <a,;\ T+

by l)) etk T (we drop the band index n as it is irrelevant for this discussion). After a momentum-
scattering event at an impurity or a phonon, there is an amplitude that the electron is scattered in
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another spin-up state, @Z),;,T(F), but also in the corresponding spin-down state, of the form (11):
Vg = (a*_g,| 1)=0" | T>> '™ 1 one neglects the spin-orbit coupling during scattering (e.g.,

if the spin-orbit coupling of the impurity is insignificant), then the spin-conserving and spin-flip
scattering probabilities, P}, and P, are, in the Born approximation,

1 ?
U= [ loH g )|
e T 2 2 |2

= {aze™|6H|ap e ) + (bg e 7|6 H by, ) (18)
1 2
U= |0 g )|

. e e L2
= | = (@B HW T+ (b o H ", ) (19)

where § H is the perturbation that causes the scattering [formally, neglecting the spin-orbit cou-
pling during scattering means that (T |0H| |) = (| [0H|T) = 0, which was taken into account
in Eq. (18,19)]. The important conclusion from Eq. (18,19) is that the spin-flip probability in-
cludes factors of the order |a|?|b|?, while the spin-conserving probability includes factors of the
order |a|*. Accor